AI Article Synopsis

  • Bone marrow niches, specifically endosteal and perivascular, are crucial for normal functions and are involved in conditions like cancer cell dormancy.
  • Researchers developed a 3D in vitro model of human bone marrow using advanced microfluidic and stem cell technologies, effectively mimicking real-life bone marrow environments.
  • This new model allows for better understanding of bone marrow functions and responses to drugs by capturing dynamic events at a high resolution.

Article Abstract

Bone marrow niches (endosteal and perivascular) play important roles in both normal bone marrow function and pathological processes such as cancer cell dormancy. Unraveling the mechanisms underlying these events in humans has been severely limited by models that cannot dissect dynamic events at the niche level. Utilizing microfluidic and stem cell technologies, we present a 3D in vitro model of human bone marrow that contains both the perivascular and endosteal niches, complete with dynamic, perfusable vascular networks. We demonstrate that our model can replicate in vivo bone marrow function, including maintenance and differentiation of CD34 hematopoietic stem/progenitor cells, egress of neutrophils (CD66b), and niche-specific responses to doxorubicin and granulocyte-colony stimulating factor. Our platform provides opportunities to accelerate current understanding of human bone marrow function and drug response with high spatial and temporal resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658812PMC
http://dx.doi.org/10.1016/j.biomaterials.2021.121245DOI Listing

Publication Analysis

Top Keywords

bone marrow
24
human bone
12
marrow function
12
marrow niches
8
bone
6
marrow
6
organ-on-a-chip model
4
model vascularized
4
vascularized human
4
niches bone
4

Similar Publications

The inhibitory impact of various total body irradiation doses on the hematopoietic system of mice.

Blood Sci

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.

Irradiation with X-rays has been widely utilized in the clinical treatment of solid tumors and certain hematopoietic malignancies. However, this method fails to completely distinguish between malignant and normal cells. Prolonged or repeated exposure to radiation, whether due to occupational hazards or therapeutical interventions, can cause damage to normal tissues, particularly impacting the hematopoietic system.

View Article and Find Full Text PDF

Objectives: Histological osteochondral characteristics of inflammation, fibrosis, vascularity, cartilage islands, vessels entering cartilage, thickened trabeculae and cysts are associated with bone marrow lesions (BMLs) in human knee osteoarthritis (OA). We identified and developed a method for scoring comparable pathology in two rat OA knee pain models.

Methods: Rats (n ​= ​8-10 per group) were injected with monoiodoacetate (MIA) or saline, or underwent meniscal transection (MNX) or sham surgery.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a condition that affects the quality of life of millions of patients worldwide. Current clinical treatments, in most cases, lead to cartilage repair with deposition of fibrocartilage tissue, which is mechanically inferior and not as durable as hyaline cartilage tissue. We designed an mRNA delivery strategy to enhance the natural healing potential of autologous bone marrow aspirate concentrate (BMAC) for articular cartilage repair.

View Article and Find Full Text PDF

Sequential delivery of IL-10 and icariin using nanoparticle/hydrogel hybrid system for prompting bone defect repair.

Mater Today Bio

December 2024

Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.

The treatment of large bone defects remains challenging due to the lack of spatiotemporal management of the immune microenvironment, inflammation response and bone remodeling. To address these issues, we designed and developed a nanoparticle/hydrogel hybrid system that can achieve the combined and sequential delivery of an anti-inflammatory factor (IL-10) and osteogenic drug (icariin, ICA). A photopolymerizable composite hydrogel was prepared by combining gelatin methacryloyl (GelMA) and heparin-based acrylated hyaluronic acid (HA) hydrogels containing IL-10, and poly(dl-lactide-co-glycolide) (PLGA)-HA nanoparticles loaded with ICA were incorporated into the composite hydrogels.

View Article and Find Full Text PDF

Aims: Acute hypoglycaemia promotes pro-inflammatory cytokine production, increasing the risk for cardiovascular events in diabetes. AMP-activated protein kinase (AMPK) is regulated by and influences the production of pro-inflammatory cytokines. We sought to examine the mechanistic role of AMPK in low glucose-induced changes in the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF), which is elevated in people with diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: