AI Article Synopsis

  • Deletion-containing viral genomes (DelVGs) are special types of viruses made during influenza A virus infections, and they can affect how serious an illness might be.
  • Scientists used advanced technology to study these DelVGs and found that they form in specific spots in the virus's genetic material, which are linked to certain patterns in the virus’s DNA.
  • They discovered that when these DelVGs are packaged into new viruses, larger ones have a better chance of getting included than smaller ones, which helps us understand how these viruses work and could lead to new treatments.

Article Abstract

Deletion-containing viral genomes (DelVGs) are commonly produced during influenza A virus infection and have been implicated in influencing clinical infection outcomes. Despite their ubiquity, the specific molecular mechanisms that govern DelVG formation and their packaging into defective interfering particles (DIPs) remain poorly understood. Here, we utilized next-generation sequencing to analyze DelVGs that form early during infection, prior to packaging. Analysis of these early DelVGs revealed that deletion formation occurs in clearly defined hot spots and is significantly associated with both direct sequence repeats and enrichment of adenosine and uridine bases. By comparing intracellular DelVGs with those packaged into extracellular virions, we discovered that DelVGs face a significant bottleneck during genome packaging relative to wild-type genomic RNAs. Interestingly, packaged DelVGs exhibited signs of enrichment for larger DelVGs suggesting that size is an important determinant of packaging efficiency. Our data provide the first unbiased, high-resolution portrait of the diversity of DelVGs that are generated by the influenza A virus replication machinery and shed light on the mechanisms that underly DelVG formation and packaging. Defective interfering particles (DIPs) are commonly produced by RNA viruses and have been implicated in modulating clinical infection outcomes; hence, there is increasing interest in the potential of DIPs as antiviral therapeutics. For influenza viruses, DIPs are formed by the packaging of genomic RNAs harboring internal deletions. Despite decades of study, the mechanisms that drive the formation of these deletion-containing viral genomes (DelVGs) remain elusive. Here, we used a specialized sequencing pipeline to characterize the first wave of DelVGs that form during influenza virus infection. This data set provides an unbiased profile of the deletion-forming preferences of the influenza virus replicase. In addition, by comparing the early intracellular DelVGs to those that get packaged into extracellular virions, we described a significant segment-specific bottleneck that limits DelVG packaging relative to wild-type viral RNAs. Altogether, these findings reveal factors that govern the production of both DelVGs and DIPs during influenza virus infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609359PMC
http://dx.doi.org/10.1128/mBio.02959-21DOI Listing

Publication Analysis

Top Keywords

influenza virus
24
viral genomes
12
relative wild-type
12
genomic rnas
12
delvgs
12
virus infection
12
wild-type genomic
8
deletion-containing viral
8
genomes delvgs
8
commonly produced
8

Similar Publications

A Susceptible Cell-Selective Delivery (SCSD) of mRNA-Encoded Cas13d Against Influenza Infection.

Adv Sci (Weinh)

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.

To bolster the capacity for managing potential infectious diseases in the future, it is critical to develop specific antiviral drugs that can be rapidly designed and delivered precisely. Herein, a CRISPR/Cas13d system for broad-spectrum targeting of influenza A virus (IAV) from human, avian, and swine sources is designed, incorporating Cas13d mRNA and a tandem CRISPR RNA (crRNA) specific for the highly conserved regions of viral polymerase acidic (PA), nucleoprotein (NP), and matrix (M) gene segments, respectively. Given that the virus targets cells with specific receptors but is not limited to a single organ, a Susceptible Cell Selective Delivery (SCSD) system is developed by modifying a lipid nanoparticle with a peptide mimicking the function of the hemagglutinin of influenza virus to target sialic acid receptors.

View Article and Find Full Text PDF

Unlabelled: The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles.

View Article and Find Full Text PDF

This study prospectively collected the clinical data, information on respiratory pathogens, and laboratory findings of children with Mycoplasma pneumoniae (M. pneumonia) infection who were hospitalized at the First Affiliated Hospital of Anhui Medical University during the M. pneumoniae outbreak in Hefei City, Anhui Province, China, between October 2023 and December 2023.

View Article and Find Full Text PDF

Background: Patients with congenital heart defects (CHDs) are at higher risk for infectious diseases. This may partly be due to frequent hospital stays and the associated exposure to pathogens. This study aims to provide a comprehensive overview of immunisation coverage among twins in which at least one twin has CHD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!