High energy pulsed High-order Mode (HOM) beams has great potential in materials processing and particle acceleration. We experimentally demonstrate a high energy mode-locking Raman all-fiber laser with switchable HOM state. A home-made fiber mode-selective coupler (MSC) is used as the mode converter with a wide bandwidth of 60 nm. By combining advantages of MSC and stimulated Raman scattering, 1.1 μJ pulsed HOM beams directly emitting from the all-fiber cavity can be achieved. After controlling the category and phase delay of vector modal superposition, different pulsed HOM beams including cylindrical vector beams (CVBs) (radial and angular) and optical vortex beams (OVBs) are reasonably obtained with high purity (all over 95%), as well as arbitrary switching. Furtherly, the slope efficiency of HOM beams in the mode-locking and continuous wave operations are as much as 20.3% and 31.8%, respectively. It may provide an effective way to achieve high energy pulsed HOM beams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.442283 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!