To develop on-chip photonic devices capable of transmitting terahertz signals beyond the propagation distance of millimeter while keeping deep subwavelength field confinement has been a challenging task. Herein, we propose a novel multilayer graphene-based hybrid plasmonic waveguide (MLGHPW) consisting of a cylindrical dielectric waveguide and hyperbolic metamaterials. The device is based on alternating graphene and dielectric layers on a rib substrate, operating in the terahertz range (f = 3 THz). We couple the fundamental dielectric waveguide mode with the fundamental volume plasmon polarition modes originated from the coupling of plasmon polaritons at individual graphene sheets. The resulting hybrid mode shows ultra-low loss compared with the conventional GHPW modes at the comparable mode sizes. The present MLGHPW demonstrated a few millimeters of propagation length while keeping the mode area of 10A, where A is the diffraction-limited area, thus possessing a thirty times larger figure of merit (FoM) compared to other GHPWs. The additional degree of freedom (the number of graphene layers) makes the proposed MLGHPW more flexible to control the mode properties. We investigated the geometry and physical parameters of the device and identified optimal FoM. Moreover, we analyzed the crosstalk between waveguides and confirmed the potential to construct compact on-chip terahertz devices. The present design might have the possible extensibility to other graphene-like materials, like silicene, germanen, stanene etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.440797 | DOI Listing |
Nano Lett
January 2025
School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
Hybrid nonlinear plasmonic waveguides, characterized by a small mode area and large nonlinear susceptibility, present an intriguing and practical platform for the minimization of nonlinear photonic devices. Nevertheless, the intrinsic Ohmic loss associated with surface plasmon polaritons (SPPs) and modal dispersion imposes constraints on the effective interaction length and, consequently, the ultimate efficiency of nonlinear processes. In this study, we demonstrate an efficient second harmonic generation (SHG) within a hybrid plasmonic waveguide by leveraging SPP-like modes at the fundamental wave and photonic-like modes at the SHG under phase matching conditions.
View Article and Find Full Text PDFLuminescence
January 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Two versatile yet simple methods, colorimetric and spectrofluorimetric, were utilized for the quantitation of nonchromophore neomycin using silver nanoparticles modified with fluorescein. Fluorescein was excited at 485 nm (emission at 515 nm); when it is deposited on the surface of silver nanoparticles, its fluorescence intensity at 515 nm is quenched. Neomycin restores the fluorescence level at 515 nm by displacing fluorescein from nanoparticle binding sites.
View Article and Find Full Text PDFNano Lett
January 2025
Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.
Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Rice University Houston Texas 77005 USA
We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!