We theoretically and numerically study the efficiency of Brillouin-based opto-acoustic data storage in a photonic waveguide in the presence of thermal noise and laser phase noise. We compare the physics of the noise processes and how they affect different storage techniques, examining both amplitude and phase storage schemes. We investigate the effects of storage time and pulse properties on the quality of the retrieved signal and find that phase storage is less sensitive to thermal noise than amplitude storage.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.439926DOI Listing

Publication Analysis

Top Keywords

thermal noise
8
phase storage
8
storage
7
noise
5
noise brillouin
4
brillouin based
4
based storage
4
storage theoretically
4
theoretically numerically
4
numerically study
4

Similar Publications

Introduction: The COVID-19 pandemic has underscored the health benefits of green spaces, yet research on how specific elements of natural infrastructure affect well-being during the pandemic has been limited.

Methods: This study, conducted at Sichuan Agricultural University with 300 students in 2022, investigated how urban natural infrastructure impacts physical and psychological well-being during the pandemic. Different aspects of natural infrastructure, such as thermal comfort, air quality (negative ion concentration), and noise and light levels, varied in their positive effects on students' health.

View Article and Find Full Text PDF

: Accurate reconstruction of internal temperature fields from surface temperature data is critical for applications such as non-invasive thermal imaging, particularly in scenarios involving small temperature gradients, like those in the human body. : In this study, we employed 3D convolutional neural networks (CNNs) to predict internal temperature fields. The network's performance was evaluated under both ideal and non-ideal conditions, incorporating noise and background temperature variations.

View Article and Find Full Text PDF

Coupling the thermal acoustic modes of a bubble to an optomechanical sensor.

Microsyst Nanoeng

December 2024

ECE Department, University of Alberta, 9211-116 St. NW, Edmonton, T6G 1H9, AB, Canada.

Optomechanical sensors provide a platform for probing acoustic/vibrational properties at the micro-scale. Here, we used cavity optomechanical sensors to interrogate the acoustic environment of adjacent air bubbles in water. We report experimental observations of the volume acoustic modes of these bubbles, including both the fundamental Minnaert breathing mode and a family of higher-order modes extending into the megahertz frequency range.

View Article and Find Full Text PDF

Thermal-induced transitions between multistable states hold significant interest in stochastic thermodynamics and dynamical control with nanomechanical systems. Here, we study kinetic-energy-dependent over-barrier behaviors in the rotational degree of freedom of silica nanodumbells in tilted periodic potentials. In the rotational degree of freedom, nanodumbbells can undergo critical transitions between librations and rotations as the ellipticity of the trapping laser field changes.

View Article and Find Full Text PDF

Low-temperature scanning tunneling spectroscopy is a key method to probe electronic and magnetic properties down to the atomic scale, but suffers from extreme vibrational sensitivity. This makes it challenging to employ closed-cycle cooling with its required pulse-type vibrational excitations, albeit this is mandatory to avoid helium losses for counteracting the continuously raising helium prices. Here, we describe a compact ultra-high vacuum scanning tunneling microscope (STM) system with an integrated primary pulse tube cooler (PTC) for closed-cycle operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!