Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Frequency-based cavity mode-dispersion spectroscopy (CMDS), previously applied for Doppler-limited molecular spectroscopy, is now employed for the first time for saturation spectroscopy. Comparison with two intensity-based, cavity-enhanced absorption spectroscopy techniques, i.e. cavity mode-width spectroscopy (CMWS) and the well-established cavity ring-down spectroscopy (CRDS), shows the predominance of the CMDS. The method enables measurements in broader pressure range and shows high immunity of the Lamb dip position to the incomplete model of saturated cavity mode shape. Frequencies of transitions from the second overtone of CO are determined with standard uncertainty below 500 Hz which corresponds to relative uncertainty below 3 × 10. The pressure shift of the Lamb dips, which has not been detected for these transitions in available literature data, is observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.443661 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!