We demonstrate high quality (Q) factor microring resonators in high index-contrast GeSbSe chalcogenide glass waveguides using electron-beam lithography followed by plasma dry etching. A microring resonator with a radius of 90 μm shows an intrinsic Q factor of 4.1 × 10 in the telecom band. Thanks to the submicron waveguide dimension, the effective nonlinear coefficient was determined to be up to ∼110 Wm at 1550 nm, yielding a larger figure-of-merit compared with previously reported submicron chalcogenide waveguides. Such a high Q factor, combined with the large nonlinear coefficient and high confinement, shows the great potential of the GeSbSe microring resonator as a competitive platform in integrated nonlinear photonics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.434808DOI Listing

Publication Analysis

Top Keywords

microring resonators
8
microring resonator
8
nonlinear coefficient
8
high-q submicron-confined
4
submicron-confined chalcogenide
4
microring
4
chalcogenide microring
4
resonators demonstrate
4
high
4
demonstrate high
4

Similar Publications

MoTe Photodetector for Integrated Lithium Niobate Photonics.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.

The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.

View Article and Find Full Text PDF

With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.

View Article and Find Full Text PDF

High-integrated photonic tensor core utilizing high-dimensional lightwave and microwave multidomain multiplexing.

Light Sci Appl

January 2025

Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.

The burgeoning volume of parameters in artificial neural network models has posed substantial challenges to conventional tensor computing hardware. Benefiting from the available optical multidimensional information entropy, optical intelligent computing is used as an alternative solution to address the emerging challenges of electrical computing. These limitations, in terms of device size and photonic integration scale, have hindered the performance of optical chips.

View Article and Find Full Text PDF
Article Synopsis
  • The proposed hybrid photonic platform combines chalcogenide glass (GeSbSe) with lithium niobate on insulator (LNOI) to enhance performance and compactness for integrated photonic systems.
  • Key components such as grating couplers, micro-ring resonators, multimode interference couplers, and Mach-Zehnder interferometers are designed and fabricated, achieving high quality factors and low propagation losses.
  • This platform's unique optical properties allow for scalable, low-loss integrated photonic circuits, making it suitable for applications in high-speed optical communications and signal processing.
View Article and Find Full Text PDF

Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers.

ACS Photonics

December 2024

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.

Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!