A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Calibration method of multi-projector display system with extra-large FOV and quantitative registration accuracy analysis. | LitMetric

The calibration of multi-projector display with extra-large field of view (FOV) and quantitative registration analysis for realizing perfect visual splicing is crucial and difficult. In this paper, we present a novel calibration method to realize the seamless splicing for a multi-projector display system with extra-large FOV. The display consists of 24 projectors, covering the range of 360 degrees in the longitude direction and 210 degrees in the latitude direction. A wide-angle camera fixed on a rotating optical system is used to scan the entire display scene and establish point-to-point correspondence between projector pixels and spatial points using the longitude and latitude information. Local longitude table and latitude table are established on the target of the wide-angle camera. A deterministic method is proposed to locate the North Pole of the display. The local tables corresponding to different camera views can be unified based on the image of the North Pole to form global longitude and latitude tables of arbitrary free-form surface. The mapping between the projector pixels and the camera pixels is established by inverse projection technique, and then each pixel of each projector can be appointed a pair of unique longitude and latitude values. A quantitative registration accuracy analysis method is proposed for multi-projector display system, in which, three-frequency temporal unwrapping method based on coded longitude and latitude values is applied to calculate the registration accuracy. Experiments prove that the registration error of the multi-projector system is less than 0.4 pixels.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.443325DOI Listing

Publication Analysis

Top Keywords

multi-projector display
16
longitude latitude
16
display system
12
quantitative registration
12
registration accuracy
12
calibration method
8
system extra-large
8
extra-large fov
8
fov quantitative
8
accuracy analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!