The terahertz Kerr effect (TKE) spectroscopy provides time-resolved measurement of low-frequency molecular motions of liquids. Here, the intense broadband terahertz (THz) pulses resonantly excite multiple molecular modes in pure ethanol and ethanol-water mixtures. For pure ethanol, the obtained unipolar TKE response contains the molecular relaxation information extending over tens of picoseconds, which originates from the coupling between the permanent molecular dipole moment of ethanol and the THz electric field. For ethanol-water mixtures with different molar proportions, the results observed on the sub-picosecond time scale can always be divided into the linear superposition of the TKE signals of pure ethanol and water. Under the observation time window over tens of picoseconds (after 1 picosecond), the relative molecular contribution of ethanol in the mixture changes nonlinearly with the increase of water molecules, implying the complex structural perturbation of ethanol hydrogen bond network in the mixture. This work provides a new perspective for further investigation on the hydrogen bond network structure and dynamics in aqueous amphiphilic solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.439954 | DOI Listing |
Foods
December 2024
Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
The distinctive flavor and aroma of Chinese baijiu are closely linked to the microorganisms involved in the fermentation process. , a dominant species in the fermentation of Chinese baijiu, has become a prominent research focus. In this study, we selected well-characterized pure cultures of microorganisms to construct diverse chassis microflora.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia. Electronic address:
Polymer-based scaffolds with bioactive materials offer great potential in bone tissue engineering. Polyethylene glycol diacrylate (PEGDA) scaffolds fabricated via liquid crystal display 3D printing technique lack inherent osteoconductivity. To improve such properties, chitosan of 10 and 20 wt% and nanohydroxyapatite (nHA) (3-10 wt%) were incorporated into PEGDA scaffolds.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China.
Lead halide perovskites have garnered interest in light-emitting diode (LED) applications due to their strong emission and tunable properties. However, conventional synthesis methods involve energy-intensive thermal processes and hazardous organic solvents, raising environmental concerns. In this study, we report a simple and eco-friendly mechanochemical approach that produces phase-pure blue-emitting CsCuI (emission at 440 nm) and yellow-emitting CsCuI (emission at 570 nm) phosphors through polarity modulation and control of grinding duration.
View Article and Find Full Text PDFChemistry
January 2025
Lingnan Normal University, School of Chemistry and Chemical Engineering, CHINA.
The development of Pd-based bimetallic nanoalloys (NAs) with abundant active sites for achieving highly efficient electrocatalysis in alcohol oxidation deserves continuous attention. Herein, we utilized a facile visible-light-assisted liquid-phase method involving adjusting reaction time to generate active sites, successfully synthesizing one-dimensional (1D) PdAg NAs rich in defects. The optimized 1D PdAg NA exhibits remarkable electrochemical activity, stability, and antipoisonous properties in glycerol oxidation reaction (GOR) and ethanol oxidation reaction (EOR), far exceeding pure Pd and commercial Pd/C catalysts.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Solar-driven CO reduction to ethanol is extremely challenging due to the limited efficiency of charge separation, sluggish kinetics of C-C coupling, and unfavorable formation of oxygenate intermediates. Here, we elaborately design a red polymer carbon nitride (RPCN) consisting of S-N and Cu-N dual active sites (Cu/S-RPCN) to address this challenge, which achieves an impressive ethanol evolution rate of 50.4 μmol g h with 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!