Fluorescence lifetime imaging microscopy (FLIM) characterizes samples by examining the temporal properties of fluorescence emission, providing useful contrast within samples based on the local physical and biochemical environment of fluorophores. Despite this, FLIM applications have been limited in scope by either poor accuracy or long acquisition times. Here, we present a method for computational single-photon counting of directly sampled time-domain FLIM data that is capable of accurate fluorescence lifetime and intensity measurements while acquiring over 160 Mega-counts-per-second with sub-nanosecond time resolution between consecutive photon counts. We demonstrate that our novel method of Single-photon PEak Event Detection (SPEED) is more accurate than direct pulse sampling and faster than established photon counting FLIM methods. We further show that SPEED can be implemented for imaging and quantifying samples that benefit from higher -throughput and -dynamic range imaging with real-time GPU-accelerated processing and use this capability to examine the NAD(P)H-related metabolic dynamics of apoptosis in human breast cancer cells. Computational methods for photon counting such as SPEED open up more opportunities for fast and accurate FLIM imaging and additionally provide a basis for future innovation into alternative FLIM techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687103PMC
http://dx.doi.org/10.1364/OE.439675DOI Listing

Publication Analysis

Top Keywords

photon counting
12
fluorescence lifetime
12
single-photon peak
8
peak event
8
event detection
8
detection speed
8
lifetime imaging
8
imaging microscopy
8
flim
6
imaging
5

Similar Publications

: The number of incidental renal lesions identified in CT scans of the abdomen is increasing. Objective: The aim of this study was to determine whether hyperdense renal lesions without solid components in a portal venous CT scan can be clearly classified as vascular or non-vascular by material decomposition into iodine and water. This retrospective single-center study included 26 patients (mean age 72 years ± 9; 16 male) with 42 hyperdense renal lesions (>20 HU) in a contrast-enhanced Photon-Counting Detector CT scan (PCD-CT) between May and December 2022.

View Article and Find Full Text PDF

Objective: Patient positioning during clinical practice can be challenging, and mispositioning leads to a change in CT number. CT number fluctuation was assessed in single-energy (SE) EID, dual-energy (DE) EID, and deep silicon photon-counting detector (PCD) CT over water-equivalent diameter (WED) with different mispositions.

Methods: A phantom containing five clinically relevant inserts (Mercury Phantom, Gammex) was scanned on a clinical EID CT and a deep silicon PCD CT prototype at vertical positions of 0, 4, 8, and 12 cm.

View Article and Find Full Text PDF

Deciphering the Energy Transfer Mechanism Across Metal Halide Perovskite-Phthalocyanine Interfaces.

Adv Sci (Weinh)

January 2025

Institute of Molecular Science, University of Valencia, c/Catedrático José Beltrán Martínez 2, Paterna, 46980, Valencia, Spain.

Energy transfer processes in nanohybrids are at the focal point of conceptualizing, designing, and realizing novel energy-harvesting systems featuring nanocrystals that absorb photons and transfer their energy unidirectionally to surface-immobilized functional dyes. Importantly, the functionality of these dyes defines the ultimate application. Herein, CsPbBr perovskite nanocrystals (NCs) are interfaced with zinc phthalocyanine (ZnPc) dyes featuring carboxylic acid.

View Article and Find Full Text PDF

Purpose: With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!