Basic/helix-loop-helix (bHLH) transcription factors are involved in various metabolic and physiological processes in plants. Sweetpotato (Ipomoea batatas (L.) Lam.) is an important crop in China but is highly susceptible to cold stress. However, little information on the bHLH gene family is available, and the function of this family in response to cold stress has not been revealed in sweetpotato. Here, 110 IbbHLHs were identified and classified into 17 categories based on phylogenetic relationships, conserved motifs and gene structure analyses. Except for 5 IbbHLHs, 90 IbbHLHs were putative E-box-binding proteins including 70 IbbHLHs belonging to G-box, whereas 15 IbbHLHs were putative non-E box-binding proteins based on DNA-binding analysis. In total, 37 pairs of segmental duplicated genes and 5 pairs of tandem duplication genes were identified within the IbbHLH gene family. The transcript level of 20 IbbHLHs was regulated by cold stress based on RNA-seq data, and 8 genes were selected for further quantitative real-time PCR (qRT-PCR) analysis. IbHLH8 and IbHLH92 are involved in network interaction with several genes related to abiotic and biotic stresses under cold treatment. IbbHLH79, an ICE1-like gene, was isolated and overexpressed in sweetpotato. The IbbHLH79 protein can activate the CBF (C-repeat Binding Factor) pathway, and IbbHLH79-overexpressing transgenic plants display enhanced cold tolerance. Taken together, these results provide valuable information on the IbbHLH gene family; in addition, several IbbHLHs may regulate cold stress, and the results suggest IbbHLH79 will be useful for molecular breeding of enhanced cold tolerance in sweetpotato.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.11.027 | DOI Listing |
Int J Mol Med
March 2025
National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.
Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Center for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.
Background: Crohn's disease and irritable bowel syndrome may both cause abdominal pain and diarrhea. Irritable bowel syndrome not only is an important differential diagnosis for Crohn's disease but also occurs in one out of three patients with Crohn's disease in remission in parallel. If not adequately diagnosed and treated, additional functional symptoms such as fatigue and/or muscle pain may develop, indicating a more severe course.
View Article and Find Full Text PDFMol Hortic
January 2025
Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
Banana is sensitive to cold stress and often suffers from chilling injury with browning peel and failure to normal ripening. We have previously reported that banana chilling injury is accompanied by a reduction of miR528 accumulation, alleviating the degradation of its target gene MaPPO and raising ROS levels that cause peel browning. Here, we further revealed that the miR528-MaPPO cold-responsive module was regulated by miR156-targeted SPL transcription factors, and the miR156c-MaSPL4 module was also responsive to cold stress in banana.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 520521, China.
Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.
Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.
Int J Behav Med
January 2025
Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands.
Background: Previous studies demonstrated that task-specific stress appraisals as well as the more general belief that stress is (mal)adaptive (i.e., stress mindset) can affect the stress response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!