Background: Glioma is the most common cancer in the central nervous system. Previous studies have revealed that the miR-376 family is crucial in tumour development; however, its detailed mechanism in glioma is not clear.
Methods: Cellular mRNA or protein levels of miR-376a, SIRT1, VEGF and YAP1 were detected via qRT-PCR or Western blotting. We analysed the proliferation, angiogenesis and migration abilities of glioma cell lines using colony formation, tube formation and Transwell assays. A luciferase assay was performed to determine whether miR-376a could recognize SIRT1 mRNA. Xenograft experiments were performed to analyse the tumorigenesis capacity of glioma cell lines in nude mice. The angiogenesis marker CD31 in xenograft tumours was detected via immunohistochemistry (IHC).
Results: miR-376a expression was lower in glioma cells than in normal astrocytes. miR-376a mimic inhibited SIRT1, YAP1, and VEGF expression and suppressed the proliferation, migration and angiogenesis abilities of the glioma cell lines LN229 and A172, whereas miR-376a inhibitor exerted the opposite functions. In a luciferase assay, miR-376a inhibited the luciferase activity of WT-SIRT1. SIRT1 overexpression upregulated YAP1 and VEGF in glioma cells and promoted proliferation, migration and angiogenesis. Xenografts with ectopic miR-376a expression exhibited lower volumes and weights and a slower growth curve. Overexpression of miR-376a inhibited YAP1/VEGF signalling and angiogenesis by inhibiting SIRT1 in xenograft tissues.
Conclusion: miR-376a directly targets and inhibits SIRT1 in glioma cells. Downregulation of SIRT1 resulted in decreased YAP1 and VEGF signalling, which led to suppression of glioma cell proliferation, migration and angiogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609063 | PMC |
http://dx.doi.org/10.1016/j.tranon.2021.101270 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!