Pathogen-related (PR) proteins are an integral part of plants' defense mechanisms against various types of biotic and abiotic stresses. A little is known about the importance of these PR proteins in potato defense mechanisms. In the current study, a total of 22 pathogenesis-related 1 genes were identified in the potato genome. All identified proteins possessed the CAP superfamily domain with some other motifs. The cis-acting elements analysis identified several stress-responsive elements, including MYB, ABRE, and MeJRE. The gene duplication events demonstrated purifying and positive selection pressure. Expression profiling showed high transcripts level in root compared to other tissues; however, some genes have tissue-specific expression. Furthermore, the PR-1-5 gene is transcriptionally induced under Phytophthora infestans stress and hormonal (ABA and IAA) treatments. The Real-Time qPCR analysis also validated the RNA-seq data results of genes with maximum expression in roots compared to leaves and stems. The current study results provided basic data for functional characterization and can also use as a reference study for other important crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2021.105290 | DOI Listing |
Biomed Phys Eng Express
January 2025
Ingeniería y Tecnología, Universidad Nacional Autonoma de Mexico Facultad de Estudios Superiores Cuautitlan, Av. 1o de Mayo S/N, Santa María las Torres, Campo Uno, 54740 Cuautitlán Izcalli, Edo. de Méx., Cuautitlan Izcalli, Estado de México, 54740, MEXICO.
Hemodialysis is a crucial procedure for removing toxins and waste from the body when kidneys fail to perform this function effectively. This study addresses the need to improve the efficiency and biocompatibility of membranes used in dialyzers. We simulate fluid flow through two types of membranes, Cuprophan (cellulosic) and AN69ST (synthetic), to understand the complex mechanisms involved and quantify key variables such as pressure, concentration, and flow.
View Article and Find Full Text PDFPLoS Genet
January 2025
Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia.
Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Discovery Research Platform for Hidden Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK.
The coronavirus HCoV-OC43 circulates continuously in the human population and is a frequent cause of the common cold. Here, we generated a high-resolution atlas of the transcriptional and translational landscape of OC43 during a time course following infection of human lung fibroblasts. Using ribosome profiling, we quantified the relative expression of the canonical open reading frames (ORFs) and identified previously unannotated ORFs.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China.
Introduction: Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relationship between autophagy and LN remains unelucidated.
Methods: We analyzed differentially expressed genes (DEGs) in kidney tissues from 14 LN patients and 7 normal controls using the GSE112943 dataset.
PLoS One
January 2025
Department of Chemistry, Ashoka University, Sonipat, Haryana, India.
Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!