Atomic sheets of silver ferrite with universal microwave catalytic behavior.

Sci Total Environ

Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihta, Patna, Bihar 801106, India. Electronic address:

Published: April 2022

Prompt degradation of organic pollutants renders microwave (MW) catalysis technology extremely lucrative; ideal microwave catalysts are therefore being hunted with an unprecedented urgency. Ideal functional microwave catalyst should be highly crystalline, room temperature ferromagnetic (for magnetic retrieval), highly dielectric (for sufficient microwave absorption) apart from being structurally stable at high temperature. The potential of silver ferrite 2D sheets (2D AFO) synthesized using a novel microwave technique as a microwave catalyst for the degradation of a variety of organic dyes and antibiotics was investigated in this article. While organic dyes like malachite green (MG), brilliant green (BG) and nile blue A (NB) achieved 99.2%, 98.8% and 95.2%, respectively; antibiotic tetracycline hydrochloride (TCH) molecule resulted in 75.8% degradation efficiency. Total organic carbon (TOC) measurements yielded 76%, 59.1%, 49.1% and 47.6% of carbon content for MG, BG, NB and TCH, respectively. The reaction pathway via intermediates and subsequent degradation to CO and HO is revealed by liquid chromatography-mass spectrometry (LCMS). Both superoxide and hydroxyl radicals are participating in the process, according to scavenger tests. The evolution of silver ferrite as a new 2D material and its demonstration as an ideal microwave catalyst will lead to a new beginning in catalysis science and technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151735DOI Listing

Publication Analysis

Top Keywords

silver ferrite
12
microwave catalyst
12
microwave
8
ideal microwave
8
organic dyes
8
atomic sheets
4
sheets silver
4
ferrite universal
4
universal microwave
4
microwave catalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!