Rabies is a major public health problem with a fatality rate close to 100%, caused by a virus of the Lyssavirus genus, of which rabies virus (RABV) is the prototype. Nonetheless, the complete prevention can be achieved by the induction of neutralizing antibodies by pre- or post-exposure prophylaxis. According to the world health organization (WHO) and World Organization for animal health (OIE), serum titers of rabies virus neutralizing antibodies (RVNA) that are higher or equal to 0.5 international units (IU)/ml indicate adequate immune response after vaccination against rabies. Currently, RFFIT and FAVN are the gold standard tests recommended by both WHO and OIE for detecting and quantitating RVNA in biological samples from individuals or animals previously vaccinated and/or subjects suspected of having been infected by RABV. Although the tests RFFIT and FAVN are efficient, they are time-consuming, labor-intensive manual tests and not cost-effective for routine use. Following the previously mentioned, approaches with alternative methods have been developed to detect RVNA or rabies-specific antibodies in human or animal serum, but with variable success. This work summarizes the advances in the serological assays for the detection of neutralizing antibodies or rabies antibodies and assesses the individual immune status after vaccination against rabies, as well as the mechanisms of RABV neutralization mediated by antibodies. Therefore, the main alternative methods for the determination of RABV or rabies-specific antibodies are exposed, with promising results, besides being easy to execute, of low cost, and representing a possibility of being applied, according to the proposal of each test to the network of Rabies Surveillance Laboratories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actatropica.2021.106254 | DOI Listing |
Therapeutic monoclonal antibodies (mAbs) against SARS-CoV-2 become obsolete as spike substitutions reduce antibody binding. To induce antibodies against conserved receptor-binding domain (RBD) regions for protection against SARS-CoV-2 variants of concern and zoonotic sarbecoviruses, we developed mosaic-8b RBD-nanoparticles presenting eight sarbecovirus RBDs arranged randomly on a 60-mer nanoparticle. Mosaic-8b immunizations protected animals from challenges from viruses whose RBDs were matched or mismatched to those on nanoparticles.
View Article and Find Full Text PDFGammaherpesviruses are oncogenic pathogens that establish lifelong infections. There are no FDA-approved vaccines against Epstein-Barr virus or Kaposi sarcoma herpesvirus. Murine gammaherpesvirus-68 (MHV68) infection of mice provides a system for investigating of gammaherpesvirus pathogenesis and testing vaccine strategies.
View Article and Find Full Text PDFUnlabelled: Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 CD4-binding site (CD4bs) occur infrequently in macaques and humans and have not been reproducibly elicited in any outbred animal model. To address this challenge, we first isolated RHA10, an infection-induced rhesus bNAb with 51% breadth. The cryo-EM structure of RHA10 with HIV-1 envelope (Env) resembled prototypic human CD4bs bNAbs with CDR-H3-dominated binding.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Pharmacy, Federal University of Sergipe, São Cristóvão, 49100-000, SE, Brazil.
The development of COVID-19 vaccines has been an important step in the fight against the pandemic. However, it is still necessary to understand the influence of factors that can alter the immune response. In general, doses need to be updated frequently, and care must be taken to control the virus that is still circulating worldwide.
View Article and Find Full Text PDFMol Genet Metab Rep
March 2025
Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
Background: The current standard of care for infantile-onset Pompe disease (IOPD), a severe form of acid α-glucosidase enzyme activity deficiency is: (1) detection by newborn screening, (2) early initiation of intravenous enzyme replacement therapy (ERT) using recombinant human acid alpha-glucosidase (rhGAA), with higher doses of rhGAA increasingly used to improve clinical outcomes, and (3) immune tolerization induction (ITI) using to prevent anti-rhGAA antibody formation, with methotrexate (MTX), rituximab, and IVIG used for patients who are cross-reactive immunologic material negative (CRIM-) and monotherapy with MTX used in patients who are cross-reactive immunologic material positive (CRIM+).
Objectives/methods: A pilot study evaluates a dose-intensive therapy (DIT) using high-dose ERT (40 mg/kg/week) and more frequent exposure to ERT (i.e.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!