Photo-induced crawling motion of a crystal of 3,3'-dimethylazobenzene (DMAB) on gold surfaces having different surface properties and various patterns was studied. DMAB crystals crawl continuously when exposed to UV and visible lights simultaneously from different directions. On a gold surface functionalized by a thiol having a hydroxyl group at the terminal (16-hydroxy-1-hexadecanethiol (HOCSH)), the crystals crawled with a relatively high velocity (ca. 4 μm min), and they changed the crystal shape while keeping a distinct crystal face. On a gold surface functionalized by a thiol having an alkyl chain terminal (1-hexadecanethiol (CSH)), the crawling was observed with a slower velocity (ca. 1.5 μm min). However, the shape of the crystals became a droplet-like shape soon after the irradiation started, and the shape persisted during the motion. Light intensity dependence of the crawling velocity of the droplet-like crystal on this surface showed that UV light has stronger dependence for the motion than the visible light. On a substrate with a stripe pattern of alternating CSH-modified gold and hexadecyltrimethylsilane (HDTMS)-modified glass, crystals crawled only on the surface of the CSH-modified gold, which may be due to the wettability hysteresis at the surface. On a substrate with a stripe pattern of HOCSH-modified gold and HDTMS-modified glass, crystals were attracted to the gold side. On a gold substrate with a periodic pattern of different height (ca. 50 nm) but having a uniform treatment with CSH, crystals crawled up and down the steps without significant disturbance at the boundary of the step. Therefore, wettability of the surface has a greater impact on controlling the motion of the crystal than the surface structure. The present results not only unveil the crawling behavior on various surfaces but also offer a guide to controlling the motion toward applications for novel carriage vehicles to transport molecules/objects on a surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c02494DOI Listing

Publication Analysis

Top Keywords

crystals crawled
12
gold
9
surface
9
photo-induced crawling
8
crawling motion
8
gold surfaces
8
motion crystal
8
gold surface
8
surface functionalized
8
functionalized thiol
8

Similar Publications

Soft actuators hold great promise for applications in biomimetic robots, artificial muscles, and drug delivery systems due to their adaptability in diverse environments. A critical aspect of designing thermally responsive soft actuators is to achieve spatially programmable actuation under a global thermal stimulus. Different local actuation behaviors can be encoded in one actuator to enable complex morphing structures for different tasks.

View Article and Find Full Text PDF

Light-Driven Liquid Crystal Elastomer Actuators Based on Surface Plasmon Resonance for Soft Robots.

ACS Appl Mater Interfaces

December 2024

School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.

Article Synopsis
  • Caterpillars exhibit flexible movement and can alternate between crawling and jumping, offering insights for creating advanced bionic robots that can adapt to various environments.!
  • Researchers developed a Janus-type soft robot inspired by caterpillars, using a combination of silver nanowires and liquid crystal elastomer, which allows for rapid and versatile movement by leveraging structural differences.!
  • The robot can crawl, tumble, and jump quickly across different terrains, demonstrating its adaptability, and uses an innovative spiderweb-like network for efficient heat conversion, highlighting its potential for autonomous exploration in complex settings.!
View Article and Find Full Text PDF

In nature, many organisms augment chances of survival by reprogramming their structures to evolving environment, among which sea squirts being a prime example. Such reprogramming has been demonstrated in liquid crystal elastomer (LCE) actuator assembled with heat assistance. However, the required temperature being higher than the actuation temperature limits its application.

View Article and Find Full Text PDF

Organic crystals of 3,3'-dimethylazobenzene (DMAB) exhibit photo-induced crawling motion on solid surfaces when they are simultaneously irradiated with ultraviolet and visible light from opposite directions. DMAB crystals are candidates for light-driven cargo transporters, having simple chemical compositions and material structures. However, fast crawling motion without significant shape deformation has not yet been achieved.

View Article and Find Full Text PDF

Fibers of liquid crystal elastomers (LCEs) as promising artificial muscle show ultralarge and reversible contractile strokes. However, the contractile force is limited by the poor mechanical properties of the LCE fibers. Herein, we report high-strength LCE fibers by introducing a secondary network into the single-network LCE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!