The advent of three dimensionally (3D) printed customized bone grafts using different biomaterials has enabled repairs of complex bone defects in various in vivo models. However, studies related to their clinical translations are truly limited. Herein, 3D printed poly(lactic--glycolic acid)/β-tricalcium phosphate (PLGA/TCP) and TCP scaffolds with or without recombinant bone morphogenetic protein -2 (rhBMP-2) coating were utilized to repair primate's large-volume mandibular defects and compared efficacy of prefabricated tissue-engineered bone (PTEB) over direct implantation (without prefabrication). F-FDG PET/CT was explored for real-time monitoring of bone regeneration and vascularization. After 3-month's prefabrication, the original 3D-architecture of the PLGA/TCP-BMP scaffold was found to be completely lost, while it was properly maintained in TCP-BMP scaffolds. Besides, there was a remarkable decrease in the PLGA/TCP-BMP scaffold density and increase in TCP-BMP scaffolds density during ectopic (within latissimus dorsi muscle) and orthotopic (within mandibular defect) implantation, indicating regular bone formation with TCP-BMP scaffolds. Notably, PTEB based on TCP-BMP scaffold was successfully fabricated with pronounced effects on bone regeneration and vascularization based on radiographic, F-FDG PET/CT, and histological evaluation, suggesting a promising approach toward clinical translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672350PMC
http://dx.doi.org/10.1021/acsbiomaterials.1c00509DOI Listing

Publication Analysis

Top Keywords

tcp-bmp scaffolds
12
bone
8
tissue-engineered bone
8
f-fdg pet/ct
8
bone regeneration
8
regeneration vascularization
8
plga/tcp-bmp scaffold
8
prefabricated 3d-printed
4
3d-printed tissue-engineered
4
bone mandibular
4

Similar Publications

Prefabricated 3D-Printed Tissue-Engineered Bone for Mandibular Reconstruction: A Preclinical Translational Study in Primate.

ACS Biomater Sci Eng

December 2021

Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China.

The advent of three dimensionally (3D) printed customized bone grafts using different biomaterials has enabled repairs of complex bone defects in various in vivo models. However, studies related to their clinical translations are truly limited. Herein, 3D printed poly(lactic--glycolic acid)/β-tricalcium phosphate (PLGA/TCP) and TCP scaffolds with or without recombinant bone morphogenetic protein -2 (rhBMP-2) coating were utilized to repair primate's large-volume mandibular defects and compared efficacy of prefabricated tissue-engineered bone (PTEB) over direct implantation (without prefabrication).

View Article and Find Full Text PDF

Bone defects resulting from trauma or infection need timely and effective treatments to restore damaged bone. Using specialized three-dimensional (3D) printing technology we have created custom 3D scaffolds of hydroxyapatite (HA)/beta-tri-calcium phosphate (β-TCP) to promote bone repair. To further enhance bone regeneration we have coated the scaffolds with dipyridamole, an agent that increases local adenosine levels by blocking cellular uptake of adenosine.

View Article and Find Full Text PDF

A local delivery system with sustained and efficient release of therapeutic agents from an appropriate carrier is desirable for orthopedic applications. Novel composite scaffolds made of poly (lactic-co-glycolic acid) with tricalcium phosphate (PLGA/TCP) were fabricated by an advanced low-temperature rapid prototyping technique, which incorporated either endogenous bone morphogenetic protein-2 (BMP-2) (PLGA/TCP/BMP-2) or phytomolecule icaritin (ICT) (PLGA/TCP/ICT) at low, middle and high doses. PLGA/TCP served as control.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional beta-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial beta-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!