The advent of three dimensionally (3D) printed customized bone grafts using different biomaterials has enabled repairs of complex bone defects in various in vivo models. However, studies related to their clinical translations are truly limited. Herein, 3D printed poly(lactic--glycolic acid)/β-tricalcium phosphate (PLGA/TCP) and TCP scaffolds with or without recombinant bone morphogenetic protein -2 (rhBMP-2) coating were utilized to repair primate's large-volume mandibular defects and compared efficacy of prefabricated tissue-engineered bone (PTEB) over direct implantation (without prefabrication). F-FDG PET/CT was explored for real-time monitoring of bone regeneration and vascularization. After 3-month's prefabrication, the original 3D-architecture of the PLGA/TCP-BMP scaffold was found to be completely lost, while it was properly maintained in TCP-BMP scaffolds. Besides, there was a remarkable decrease in the PLGA/TCP-BMP scaffold density and increase in TCP-BMP scaffolds density during ectopic (within latissimus dorsi muscle) and orthotopic (within mandibular defect) implantation, indicating regular bone formation with TCP-BMP scaffolds. Notably, PTEB based on TCP-BMP scaffold was successfully fabricated with pronounced effects on bone regeneration and vascularization based on radiographic, F-FDG PET/CT, and histological evaluation, suggesting a promising approach toward clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672350 | PMC |
http://dx.doi.org/10.1021/acsbiomaterials.1c00509 | DOI Listing |
ACS Biomater Sci Eng
December 2021
Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China.
The advent of three dimensionally (3D) printed customized bone grafts using different biomaterials has enabled repairs of complex bone defects in various in vivo models. However, studies related to their clinical translations are truly limited. Herein, 3D printed poly(lactic--glycolic acid)/β-tricalcium phosphate (PLGA/TCP) and TCP scaffolds with or without recombinant bone morphogenetic protein -2 (rhBMP-2) coating were utilized to repair primate's large-volume mandibular defects and compared efficacy of prefabricated tissue-engineered bone (PTEB) over direct implantation (without prefabrication).
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2017
Division of Translational Medicine, Department of Medicine, NYU-Langone Medical Center, New York, New York.
Bone defects resulting from trauma or infection need timely and effective treatments to restore damaged bone. Using specialized three-dimensional (3D) printing technology we have created custom 3D scaffolds of hydroxyapatite (HA)/beta-tri-calcium phosphate (β-TCP) to promote bone repair. To further enhance bone regeneration we have coated the scaffolds with dipyridamole, an agent that increases local adenosine levels by blocking cellular uptake of adenosine.
View Article and Find Full Text PDFActa Biomater
August 2012
Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
A local delivery system with sustained and efficient release of therapeutic agents from an appropriate carrier is desirable for orthopedic applications. Novel composite scaffolds made of poly (lactic-co-glycolic acid) with tricalcium phosphate (PLGA/TCP) were fabricated by an advanced low-temperature rapid prototyping technique, which incorporated either endogenous bone morphogenetic protein-2 (BMP-2) (PLGA/TCP/BMP-2) or phytomolecule icaritin (ICT) (PLGA/TCP/ICT) at low, middle and high doses. PLGA/TCP served as control.
View Article and Find Full Text PDFBiomed Mater
December 2009
Department of Orthodontics, Stomatological College, Fourth Military Medical University, Xi'an 710032, People's Republic of China.
The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional beta-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial beta-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!