Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We introduce a new chamfering paradigm, locally connecting pixels to produce path distances that approximate Euclidean space by building a small network (a replacement product) inside each pixel. These " RE -grid graphs" maintain near-Euclidean polygonal distance contours even in noisy data sets, making them useful tools for approximation when exact numerical solutions are unobtainable or impractical. The RE -grid graph creates a modular global architecture with lower pixel-to-pixel valency and simplified topology at the cost of increased computational complexity due to its internal structure. We present an introduction to chamfering replacement products with a number of case study examples to demonstrate the potential of these graphs for path-finding in high frequency and low resolution image spaces which motivate further study. Possible future applications include morphology, watershed segmentation, halftoning, neural network design, anisotropic image processing, image skeletonization, dendritic shaping, and cellular automata.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2021.3128319 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!