Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hysteretic magnetoresistance (MR) is often used as a signature of ferromagnetism in conducting oxide films and heterostructures. Here, magnetotransport is investigated in a nonmagnetic La-doped SrSnO film. A 12 nm La:SrSnO/2 nm SrSnO/GdScO (110) film with insulating behavior exhibited a robust hysteresis loop in the MR at < 5 K accompanied by an anomaly at ∼±3 T at < 2.5 K. Furthermore, MR with the field in-plane yielded a value exceeding 100% at 1.8 K. Using detailed temperature-, angle- and magnetic field-dependent resistance measurements, we illustrate the origin of hysteresis is not due to magnetism in the film but rather is associated with the magnetocaloric effect of the substrate. Given GdScO and similar substrates are commonly used, this work highlights the importance of thermal coupling to processes in the substrates which must be carefully accounted for in the data interpretation for heterostructures utilizing these substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c03653 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!