Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-throughput crop phenotyping, particularly under field conditions, is nowadays perceived as a key factor limiting crop genetic advance. Phenotyping not only facilitates conventional breeding, but it is necessary to fully exploit the capabilities of molecular breeding, and it can be exploited to predict breeding targets for the years ahead at the regional level through more advanced simulation models and decision support systems. In terms of phenotyping, it is necessary to determined which selection traits are relevant in each situation, and which phenotyping tools/methods are available to assess such traits. Remote sensing methodologies are currently the most popular approaches, even when lab-based analyses are still relevant in many circumstances. On top of that, data processing and automation, together with machine learning/deep learning are contributing to the wide range of applications for phenotyping. This review addresses spectral and red-green-blue sensing as the most popular remote sensing approaches, alongside stable isotope composition as an example of a lab-based tool, and root phenotyping, which represents one of the frontiers for field phenotyping. Further, we consider the two most promising forms of aerial platforms (unmanned aerial vehicle and satellites) and some of the emerging data-processing techniques. The review includes three Boxes that examine specific case studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jipb.13191 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!