Efficient and innovative breeding strategies are immensely required to meet the global food demand, nutritional security and sustainable agriculture. Genome editing tools have emerged as an effective technology for site-directed genome modification causing the change in gene expression and protein function for the improvement of various important traits in particular the CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein). As the technology evolved with time, advances have been observed like prime editing, base editing, PAMless editing, Drosha based editing with multiple targets having the potential to fulfill the regulatory processes around the world. These recent interventions are highly proficient, cost-efficient, user-friendly, and holds promise for a major revolution in basic and applied plant biology research in the ever-evolving climatic conditions. In the review, we have discussed the most recent technologies and advances for CRISPR/Cas editing in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-021-06926-5 | DOI Listing |
J Thorac Oncol
January 2025
Department of Cardiothoracic Surgery, New York University Langone Health, New York, New York. Electronic address:
Introduction: The phase 3 randomized controlled trial of extended pleurectomy decortication and chemotherapy versus chemotherapy alone for pleural mesothelioma (PM) (MARS2) reported "extended pleurectomy decortication was associated with worse survival to 2 years, and more serious adverse events for individuals with resectable PM, compared with chemotherapy alone." These results have led to considerable discourse regarding the future role of surgery for PM, and there has not been unanimity in the mesothelioma surgical community regarding the trial interpretation. This "perspective" evaluates MARS2 using internationally renowned PM experts who either agreed with the trial interpretation or who found issues with its conduct which may have influenced the results.
View Article and Find Full Text PDFUsing BW25113 as a host, we isolated a novel lytic phage from the commercial poly-specific therapeutic phage cocktail Sextaphage (Microgen, Russia). We provide genetic and phenotypic characterization of the phage and describe its host range on the ECOR collection of reference strains. The phage, hereafter named Sxt1, is a close relative of classical coliphage T3 and belongs to the genus, yet its internal virion proteins, forming an ejectosome, differ from those of T3.
View Article and Find Full Text PDFPharmaceutics
December 2024
Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
RNA therapeutics are a class of medicines based on the insertion of a specific genetic message (mRNA) into the cells and the silencing or gene editing of a specific mRNA [...
View Article and Find Full Text PDFPlants (Basel)
December 2024
ChileBio CropLife, Antonio Bellet 77, Of 607, Providencia, Santiago 7500025, Chile.
The global advancement of genome-edited plants toward commercialization has been significantly shaped by the functionality and flexibility of some regulatory frameworks governing plant genome editing. These frameworks vary widely across countries, reflecting diverse approaches to assessing and managing the risks and benefits of genome-editing technologies. While some nations have adopted product-based frameworks that focus on the characteristics of the final plant rather than the technique used, others rely on more restrictive process-based regulations.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China.
The Aux/IAA family proteins, key components of the auxin signaling pathway, are plant-specific transcription factors with important roles in regulating a wide range of plant growth and developmental events. The family genes have been extensively studied in Arabidopsis. However, most of the family genes in rice have not been functionally studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!