The optical properties of biochemical compositions of microalgae are vital for the improvement of biosensor design, photobioreactor design, biofuel, and biophotonics techniques. A combination method using both the double optical pathlength transmission method (DOPTM) and the ellipsometry method (EM) is called DOPTM-EM, and it is used to acquire the optical constants of protein, lipid, and carbohydrate of Haematococcus pluvialis, Nannochloropsis sp., and Spirulina in both a solid state and a solution state within the visible and near-infrared spectral range. For different types of microalgae, the refractive indices of protein and carbohydrate in the solid state are similar to each other, but show an observed difference from lipid in the solid state. The refractive indices of protein and carbohydrate in the solution state presents a visible distinction in the researched spectral range. The absorption indices of protein, lipid, and carbohydrate in the solid state for these three types of microalgae are close to each other in the spectral range of 300-500 nm. However, an observed difference is shown in the spectral range of 500-1700 nm. For ease of application, the refractive index of biochemical composition of microalgae was fitted based on the Sellmeier equation. We believe this work can provide a reference to obtain the optical properties of biomaterial with high accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.439477DOI Listing

Publication Analysis

Top Keywords

spectral range
20
solid state
16
optical properties
12
indices protein
12
properties biochemical
8
biochemical compositions
8
compositions microalgae
8
protein lipid
8
lipid carbohydrate
8
solution state
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!