Here we present a methodology to characterize the light intensity fluctuations that arise from rotations of individual granular particles. We describe a setup for dynamic light scattering measurements on individual macroscopic particles and isolate the contribution from rotations of the individual particles to the obtained correlation functions. The results show that rotation of granular particles results in a significant contribution to scattered light intensity fluctuations, a phenomenon not considered so far in dynamic light scattering measurements on fluidized granular media. The results presented here may thus form the basis for an extended light scattering methodology for granular media, and improve the selection of granular particles according to their dynamic light scattering signal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.441093 | DOI Listing |
Background: The early detection of neurologic damage at the microscopic level when the disease is subclinical would facilitate intervention preventing progression or potentially reversing the condition. The early determination of drug efficacy could shorten the length of drug studies, thereby reducing research costs. The eye is the only place in the body where an artery, vein, and nerve can be directly visualized The nerve fiber layer of the retina is an outgrowth of the brain.
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
Department of Hepatobiliary Surgery, Ruian People's Hospital, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, China.
Background: Pancreatic cancer is a highly malignant tumor with a poor prognosis, and current treatment methods have limited effectiveness. Therefore, developing new and more effective therapeutic strategies is crucial. This study aims to establish pH-responsive silk fibroin (SF) nanoparticles encapsulating β-hydroxyisovalerylshikonin (SF@β-HIVS) to enhance the therapeutic effects against pancreatic cancer.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy.
Extracellular vesicle (EV) monitoring can complement clinical assessment of cancer response. In this study, patients with advanced non-small cell lung cancer (NSCLC) undergoing osimertinib, alectinib, pembrolizumab or platinum-based chemotherapy ± pembrolizumab were enrolled. EVs were characterized using Bradford assay to quantify the circulating cell-free EV protein content (cfEV), and dynamic light scattering to assess Rayleigh ratio excess at 90°, z-averaged hydrodynamic diameter and polydispersity index.
View Article and Find Full Text PDFBMC Cancer
January 2025
Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
Background And Aim: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies.
Methods: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method.
Sci Rep
January 2025
ISQI, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań, Poland.
High-resolution Brillouin spectroscopy was employed to investigate the anisotropy in surface wave velocities within a bulk single crystal of SbTe, a well-known layered van der Waals material. By leveraging the bulk elastic constants derived from various simulation methods, we were able to theoretically calculate the distribution of surface acoustic phonon velocities on the cleavage plane of the material. Upon analyzing multiple simulation results, it became evident that the most significant discrepancies arose in the calculations of the elastic constant c, with values ranging from 48 to 98 GPa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!