Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
is a ferroelectric nonlinear crystal with a very wide transparency window ranging from 125 nm to 13µ of the wavelength. Therefore, it is a candidate material to generate ultraviolet or deep ultraviolet laser, which is very important in lithography, semiconductor manufacturing, and advanced instrument development. Here, the second-order birefringence phase-matching processes of the crystal were studied, including second-harmonic generation (SHG) and sum-frequency generation (SFG). In the experiments, we measured the phase-matching angle, nonlinear frequency conversion efficiency, and angle bandwidth of SHG and SFG processes of crystal, which are in well agreement with the theoretical calculations. This study may promote the research of nonlinear optical process of crystal and also the further development of all-solid-state vacuum ultraviolet lasers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.438688 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!