In this paper, an analytical model of the fusion splicing loss of few-mode fiber (FMF) under the condition of dynamic crosstalk is proposed. Under different dynamic spatial modal crosstalk caused by fusion mismatches and rotation angles, we analyze the variation trend of the fusion splicing loss characteristics of FMF with ,, and , respectively. Simulation results show that under the condition of axial misalignment introducing modal crosstalk, the splice loss of the and modes is higher than that of . On the other hand, the modal crosstalk caused by rotation angles makes the fusion splice loss of present symmetrical distribution, and the loss of fusion splice of is maximum at 45°. When rotating from 0° to 90°, for and modes, the fusion loss of decreases gradually, while the loss of increases gradually. Both are in a symmetrical distribution. Meanwhile, we build an FMF fusion splice loss measurement system based on photon lanterns and FMF circulators. The experimental results show that it is consistent with the simulation results, and the experimental and simulation results confirm the feasibility of the fusion splice fault loss analysis modal under dynamic crosstalk conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.439746DOI Listing

Publication Analysis

Top Keywords

fusion splice
16
fusion splicing
12
modal crosstalk
12
splice loss
12
fusion
9
loss
9
few-mode fiber
8
dynamic spatial
8
splicing loss
8
dynamic crosstalk
8

Similar Publications

Background: Acute myeloid leukemia (AML) with RAM immunophenotype is a newly recognized high-risk AML immunophenotypic subcategory characterized by blasts with bright expression of CD56 and weak to absent expression of CD45, HLA-DR, and CD38, as first described by the Children's Oncology Group (COG). The relationship between AML-RAM and other CD56-positive acute leukemias is unclear. The goal of this study is to characterize the clinicopathological characteristics of AML with RAM phenotype and compare them with other CD56 co-expressing acute leukemias.

View Article and Find Full Text PDF

Characterization of Tumor Antigens from Multi-omics Data: Computational Approaches and Resources.

Genomics Proteomics Bioinformatics

January 2025

Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.

Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.

View Article and Find Full Text PDF

Combination of plasma acoustic emission signal and laser-induced breakdown spectroscopy for accurate classification of steel.

Anal Chim Acta

January 2025

Key Laboratory of High Performance Manufacturing for Aero Engine (MIIT), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China. Electronic address:

Background: Fast and accurate classification of steel can effectively improve industrial production efficiency. In recent years, the use of laser-induced breakdown spectroscopy (LIBS) in conjunction with other techniques for material classification has been developing. Plasma Acoustic Emission Signal (PAES) is a type of modal information separate from spectra that is detected using LIBS, and it can reflect some of the sample's physicochemical information.

View Article and Find Full Text PDF

Spliced exon9 ADRM1 promotes liver oncogenicity via selective degradation of tumor suppressor FBXW7.

J Hepatol

January 2025

Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Electronic address:

Background & Aims: The ubiquitin receptor ADRM1/Rpn13 governs the specificity of eukaryotic protein degradation. By SMRT sequencing, we first discovered a novel spliced variant of ADRM1 with a skipped exon 9, termed ADRM1-ΔEx9, in human hepatocellular carcinoma (HCC). This study aimed to elucidate this novel ubiquitin receptor's underlying biology and clinical implications in HCC.

View Article and Find Full Text PDF

We present a high-sensitivity curvature and strain Mach-Zehnder interferometer (MZI) fiber sensor based on a configuration of no-core fiber (NCF) and four-core fiber (FCF). We used an optical fiber fusion splicer to directly splice a segment of FCF between two segments of NCF, with both the FCF and NCF made of SiO, where the FCF exhibits multi-path interference characteristics that allow for higher sensitivity. The NCF, with its self-focusing property, excites higher-order modes, which split and transmit it into the four cores of the FCF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!