Packaged photodiodes suffer from Fresnel reflection from the package window glass, especially at high angles of incidence. This has a notable impact particularly on black silicon (b-Si) photodiodes, which have extreme sensitivity. In this work, we show that by adding a simple grass-like alumina antireflection (AR) coating on the window glass, excellent omnidirectional sensitivity and high external quantum efficiency (EQE) of b-Si photodiodes can be retained. We demonstrate that EQE increases at all angles, and up to 15% absolute increases in EQE at a 70° angle of incidence compared to conventional uncoated glass. Furthermore, even at the incidence angle of 50°, the double-sided coating provides higher EQE than bare glass at normal incidence. Our results demonstrate that grass-like alumina coatings are efficient and omnidirectional AR coatings for photodiode package windows in a wide wavelength range across the visible spectrum to near-infrared radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.442415DOI Listing

Publication Analysis

Top Keywords

grass-like alumina
12
black silicon
8
window glass
8
b-si photodiodes
8
alumina coated
4
coated window
4
window harnesses
4
harnesses full
4
full omnidirectional
4
omnidirectional potential
4

Similar Publications

The antireflective transmittance-enhancing films have important applications in solar cells and other applications due to their self-cleaning and high light transmittance. However, obtaining high transmittance, highly durable, and superhydrophobic surfaces in a simple and easily accessible way is still a challenge. A simple evaporative coating technique has been proposed that can be used to prepare antireflective superhydrophobic aluminum oxide films using 1,1,2,2-perfluoroalkyltriethoxysilanes.

View Article and Find Full Text PDF

Broader spectra, lower reflectivity and higher reliability are the performance requirements for broadband antireflective (BBAR) films. In this work, a BBAR film structure was proposed, which maintains extremely low reflectivity, ultra-wide spectra, low polarization sensitivity and practical reliability. The BBAR film consists of a dense multilayer interference stack on the bottom and a nano-grass-like alumina (NGLA) layer with a gradient low refractive index distribution on the top.

View Article and Find Full Text PDF

Packaged photodiodes suffer from Fresnel reflection from the package window glass, especially at high angles of incidence. This has a notable impact particularly on black silicon (b-Si) photodiodes, which have extreme sensitivity. In this work, we show that by adding a simple grass-like alumina antireflection (AR) coating on the window glass, excellent omnidirectional sensitivity and high external quantum efficiency (EQE) of b-Si photodiodes can be retained.

View Article and Find Full Text PDF

Superhydrophobic Antireflection Coating on Glass Using Grass-like Alumina and Fluoropolymer.

ACS Appl Mater Interfaces

November 2020

Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150 Espoo, Finland.

This work presents a superhydrophobic antireflective (AR) coating on glass. The coating consists of a grass-like alumina layer capped with plasma-deposited fluoropolymer. The grass-like alumina is formed by hot water treatment of atomic layer-deposited alumina on glass, and the fluoropolymer is plasma-deposited from CHF.

View Article and Find Full Text PDF

We present a new type of nanoporous antireflection (AR) coating based on grass-like alumina with a graded refractive index profile. The grass-like alumina AR coating is fabricated using atomic layer deposition (ALD) of alumina and immersion in heated deionized water. Optical transmittance of 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!