A systematic calibration approach is presented to correlate the digital output of an infrared camera and the scene temperature. Aided by the optoelectronic properties of the camera, as few as two experimental data points are needed to establish this correlation. This approach can readily include the effects of atmospheric transmission, scene emissivity, and different background subtractions. Hence, the temperature conversion in flight can be reliably obtained from laboratory calibration. The conversion function can also be used to identify the camera's thermal sensitivity and temperature resolution, which are important information in different space missions. In applying this calibration procedure to a laboratory camera and the compact thermal imager onboard the International Space Station, its validity is confirmed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.440611 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
The effects of 1 % xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) on the physicochemical and structural properties of triticale gluten (TG) during fermentation were investigated. Rheological analysis revealed that the addition of XG or HPMC decreased G' and G″ values, while increasing tanδ and recovery strain of triticale gluten during fermentation. Thermal gravimetric analysis demonstrated that triticale gluten added with XG after fermentation exhibited the highest residual mass, showing a 9.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting.
View Article and Find Full Text PDFFood Chem
December 2024
School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, Qingdao 266071, China; Qingdao University - Aliben Science & Technology Collaborative Instrument R&D Center, Qingdao 266071, China. Electronic address:
A novel, compact, and automated laser ablation dielectric barrier discharge thin layer chromatography-mass spectrometry (LA-DBD-TLC-MS) device was developed for the rapid detection of biogenic amines (BAs) in fishery products. This plug-and-play system integrates thermal desorption via diode laser, DBD plasma ionization, and tandem MS detection, with key operational parameters optimized through experimental and computational methods. Utilizing nanoscale carbon black as a matrix, the device achieved a detection limit of 0.
View Article and Find Full Text PDFSci Rep
December 2024
Mechanical and Aerospace Engineering Department, United Arab Emirates University, 15551, Al Ain, United Arab Emirates.
Fibre-reinforced polymeric composites utilized in aerospace settings, experience varying environmental conditions throughout their operational lifespan. The major factors that can have adverse effects on their long-term performance are water and temperature. The present study investigates how the determinants such as water and temperature impact the structural integrity of plain weave woven carbon/epoxy laminated composites and further categorizing them into compacted and non-compacted groups.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
To ensure the safe extraction of deep mineral resources, it is imperative to address the mechanical properties and damage mechanism of coal and rock media under the real-time coupling effect of high temperature and impact. In this study, the impact tests (impact velocities of 6.0-10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!