Microorganisms swimming through viscous fluids imprint their propulsion mechanisms in the flow fields they generate. Extreme confinement of these swimmers between rigid boundaries often arises in natural and technological contexts, yet measurements of their mechanics in this regime are absent. Here, we show that strongly confining the microalga between two parallel plates not only inhibits its motility through contact friction with the walls but also leads, for purely mechanical reasons, to inversion of the surrounding vortex flows. Insights from the experiment lead to a simplified theoretical description of flow fields based on a quasi-2D Brinkman approximation to the Stokes equation rather than the usual method of images. We argue that this vortex flow inversion provides the advantage of enhanced fluid mixing despite higher friction. Overall, our results offer a comprehensive framework for analyzing the collective flows of strongly confined swimmers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8758135 | PMC |
http://dx.doi.org/10.7554/eLife.67663 | DOI Listing |
Sci Rep
January 2025
Department of Chemical Engineering, Al-Amarah University, Maysan, Iraq.
In this paper, the usage of a predictive surrogate model for the estimate of flow variables in the transient phase of coolant injection from the nose cone by combining the Long Short-Term Memory (LSTM) and Proper Orthogonal Decomposition (POD) technique. The velocity, pressure, and mass fraction of the counterflow jet is evaluated via this hybrid technique and the source of discrepancy of a predictive surrogate model with Full order model is explained in this study. The POD modes for the efficient prediction of the different flow variables are defined.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
École polytechnique fédérale de Lausanne, School of Engineering, Institute of Mechanical Engineering, Unsteady Flow Diagnostics Laboratory, Lausanne 1015, Switzerland.
Airborne insects generate a leading edge vortex when they flap their wings. This coherent vortex is a low-pressure region that enhances the lift of flapping wings compared to fixed wings. Insect wings are thin membranes strengthened by a system of veins that does not allow large wing deformations.
View Article and Find Full Text PDFComput Biol Med
January 2025
LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy. Electronic address:
In the context of dynamic image-based computational fluid dynamics (DIB-CFD) modeling of cardiac system, the role of sub-valvular apparatus (chordae tendineae and papillary muscles) and the effects of different mitral valve (MV) opening/closure dynamics, have not been systemically determined. To provide a partial filling of this gap, in this study we performed DIB-CFD numerical experiments in the left ventricle, left atrium and aortic root, with the aim of highlighting the influence on the numerical results of two specific modeling scenarios: (i) the presence of the sub-valvular apparatus, consisting of chordae tendineae and papillary muscles; (ii) different MV dynamics models accounting for different use of leaflet reconstruction from imaging. This is performed for one healthy subject and one patient with mitral valve regurgitation.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.
The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
The flow through the grit chamber is non-biochemically treated wastewater, which contains microorganisms mainly from the source of wastewater generation. There are limited reports on aerosol particles generated by grit chambers compared with those produced by biochemical treatment tanks. This study analyzed the fugitive characteristics of aerosol particles produced in grit chambers at nine wastewater treatment plants in three regions of China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!