The circadian clock ticks in organoids.

EMBO J

Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Japan.

Published: December 2022

Organoids are self-organizing in vitro 3D cultures that are histologically similar to a variety of human organs. A recent study by Rosselot et al (2021) shows that mature intestinal organoids possess species-specific circadian clocks similar to their respective in vivo context, suggesting organoids as promising platforms to study circadian medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762543PMC
http://dx.doi.org/10.15252/embj.2021110157DOI Listing

Publication Analysis

Top Keywords

circadian clock
4
clock ticks
4
organoids
4
ticks organoids
4
organoids organoids
4
organoids self-organizing
4
self-organizing vitro
4
vitro cultures
4
cultures histologically
4
histologically variety
4

Similar Publications

While Drosophila melanogaster serves as a crucial model for investigating both the circadian clock and gut microbiome, our understanding of their relationship in this organism is still limited. Recent analyses suggested that the Drosophila gut microbiome modulates the host circadian transcriptome to minimize rapid oscillations in response to changing environments. Here, we examined the composition and abundance of the gut microbiota in wild-type and arrhythmic per flies, under 12 h:12 h light: dark (12:12 LD) and constant darkness (DD) conditions.

View Article and Find Full Text PDF

The transcription factor brain and muscle Arnt-like protein-1 (BMAL1) is a clock protein involved in various diseases, including atherosclerosis and cancer. However, BMAL1's involvement in kidney fibrosis and the underlying mechanisms remain largely unknown, a gap addressed in this study. Analysis through Masson's trichrome and Sirius red staining revealed that all groups exposed to unilateral ureteral obstruction showed increased BMAL1 protein expression accompanied by increased TGF-β1 expression and elevated key fibrosis markers, including α-SMA, compared with sham groups.

View Article and Find Full Text PDF

Purpose Fibromyalgia syndrome (FMS) presents a chronic pain condition affecting muscles and joints. Investigating circadian rhythms' disruption, integral to physiological responses, this study delves into the potential impact of  gene polymorphism (rs57875989) on FMS pathogenesis. Methods In this study, we investigated gene polymorphism in 100 FMS patients and an equal number of control individuals.

View Article and Find Full Text PDF

Spatiotemporal Control Over Circadian Rhythms With Light.

Med Res Rev

January 2025

Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.

Circadian rhythms are endogenous biological oscillators that synchronize internal physiological processes and behaviors with external environmental changes, sustaining homeostasis and health. Disruption of circadian rhythms leads to numerous diseases, including cardiovascular and metabolic diseases, cancer, diabetes, and neurological disorders. Despite the potential to restore healthy rhythms in the organism, pharmacological chronotherapy lacks spatial and temporal resolution.

View Article and Find Full Text PDF

Circadian disruption of feeding-fasting rhythm and its consequences for metabolic, immune, cancer, and cognitive processes.

Biomed J

January 2025

ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina. Electronic address:

The circadian system is composed by a central hypothalamic clock at the suprachiasmatic nuclei (SCN) that communicates with peripheral circadian oscillators for daily coordination of behavior and physiology. The SCN entrain to the environmental 24-h light-dark (LD) cycle and drive daily rhythms of internal synchronizers such as core body temperature, hypothalamic-hypophysary hormones, sympathetic/parasympathetic activity, as well as behavioral and feeding-fasting rhythms, which supply signals setting core molecular clocks at central and peripheral tissues. Steady phase relationships between the SCN and peripheral oscillators keep homeostatic processes such as microbiota/microbiome composition/activity, metabolic supply/demand, energy balance, immunoinflammatory process, sleep amount and quality, psychophysiological stress, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!