Background: The cross-coupled (CC) illusion and associated motion sickness limit the tolerability of fast-spin-rate centrifugation for artificial gravity implementation. Humans acclimate to the CC illusion through repeated exposure; however, substantial inter-individual differences in acclimation exist, which remain poorly understood. To address this, we investigated several potential predictors of individual acclimation to the CC illusion.

Methods: Eleven subjects were exposed to the CC illusion for up to 50 25-minute acclimation sessions. The metric of acclimation rate was calculated as the slope of each subject's linear increase in spin rate across sessions. As potential predictors of acclimation rate, we gathered age, gender, demographics, and activity history, and measured subjects' vestibular perceptual thresholds in the yaw, pitch, and roll rotation axes.

Results: We found a significant, negative correlation (p = 0.025) between subjects' acclimation rate and roll threshold, suggesting lower thresholds yielded faster acclimation. Additionally, a leave-one-out cross-validation analysis indicated that roll thresholds are predictive of acclimation rates. Correlations between acclimation and other measures were not found but were difficult to assess within our sample.

Conclusions: The ability to predict individual differences in CC illusion acclimation rate using roll thresholds is critical to optimizing acclimation training, improving the feasibility of fast-rotation, short-radius centrifugation for artificial gravity.

Download full-text PDF

Source
http://dx.doi.org/10.3233/VES-210019DOI Listing

Publication Analysis

Top Keywords

acclimation rate
16
acclimation
12
artificial gravity
12
individual acclimation
8
cross-coupled illusion
8
centrifugation artificial
8
potential predictors
8
rate roll
8
roll thresholds
8
illusion
5

Similar Publications

Accurate photosynthetic parameters obtained from photosynthetic light-response curves (LRCs) are crucial for enhancing our comprehension of plant photosynthesis. However, the task of fitting LRCs is still demanding due to diverse variations in LRCs under different environmental conditions, as previous models were evaluated based on a limited number of leaf traits and a small number of LRCs. This study aimed to compare the performance of nine LRC models in fitting a set of 108 LRCs measured from paddy rice ( L.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

High-resolution awake mouse fMRI at 14 tesla.

Elife

January 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.

High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.

View Article and Find Full Text PDF

In some peanut (Arachis hypogaea L.) producing regions, growth and photosynthesis-limiting low and high temperature extremes are common. Heat acclimation potential of photosynthesis and respiration is a coping mechanism that is species-dependent and should be further explored for peanut.

View Article and Find Full Text PDF

Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, promoting expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation in , a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!