Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590072 | PMC |
http://dx.doi.org/10.1016/j.xinn.2021.100177 | DOI Listing |
Adv Sci (Weinh)
January 2025
Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
The lunar soil samples returned by China's Chang'e-5 (CE-5) contain valuable information on geological evolutions on the Moon. Herein, by employing high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), five rock chip samples from the CE-5 lunar soil are characterized in-depth, which reveal micro-morphological and compositional features. From the elemental/molecular ion distribution images, minerals such as pyroxene, ilmenite, feldspar, K-rich glass, silica, and silicate minerals are identified, along with their occurrence states and distribution results.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
The evolution of the lunar magnetic field can reveal the Moon's interior structure, thermal history, and surface environment. The mid-to-late-stage evolution of the lunar magnetic field is poorly constrained, and thus, the existence of a long-lived lunar dynamo remains controversial. The Chang'e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at midlatitude.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China. Electronic address:
To explore the bio-effects during Moon exploration missions, we utilized the Chang'E 5 probe to carry the seeds of Oryza. Sativa L., which were later returned to Earth after 23 days in lunar orbit and planted in an artificial climate chamber.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
Nanophase iron (np-Fe) is widely distributed on the surface of lunar soil particles, forming as a result of space weathering. These np-Fe particles contribute to the reddening and darkening of the visible to near-infrared spectra of weathered lunar material and serve as critical indicators for assessing the maturity of lunar soil. (1) This article reviews the proposed formation mechanisms of np-Fe particles from studies of Apollo and Luna soils, including the thermal reduction of iron melts, vapor deposition caused by micrometeorite impacts, and hydrogen reduction due to solar wind exposure.
View Article and Find Full Text PDFNat Commun
September 2024
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
The redox state of a planetary mantle affects its thermal evolution. The redox evolution of lunar mantle, however, remains unclear due to limited oxygen fugacity (fO) constraints from young lunar samples. Here, we report vanadium (V) oxybarometers on olivine and spinel conducted on 27 Chang'e-5 basalt fragments from 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!