The target of Rapamycin complex1 (TORC1) senses and integrates several environmental signals, including amino acid (AA) availability, to regulate cell growth. Folliculin (FLCN) is a tumor suppressor (TS) protein in renal cell carcinoma, which paradoxically activates TORC1 in response to AA supplementation. Few tractable systems for modeling FLCN as a TS are available. Here, we characterize the FLCN-containing complex in (called BFC) and show that BFC augments TORC1 repression and activation in response to AA starvation and supplementation, respectively. BFC co-immunoprecipitates V-ATPase, a TORC1 modulator, and regulates its activity in an AA-dependent manner. BFC genetic and proteomic networks identify the conserved peptide transmembrane transporter Ptr2 and the phosphoribosylformylglycinamidine synthase Ade3 as new AA-dependent regulators of TORC1. Overall, these data ascribe an additional repressive function to Folliculin in TORC1 regulation and reveal as an excellent system for modeling the AA-dependent, FLCN-mediated repression of TORC1 in eukaryotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590082 | PMC |
http://dx.doi.org/10.1016/j.isci.2021.103338 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!