Background: Recent technological developments have enabled the execution of more scientific solutions on cloud platforms. Cloud-based scientific workflows are subject to various risks, such as security breaches and unauthorized access to resources. By attacking side channels or virtual machines, attackers may destroy servers, causing interruption and delay or incorrect output. Although cloud-based scientific workflows are often used for vital computational-intensive tasks, their failure can come at a great cost.
Methodology: To increase workflow reliability, we propose the Fault and Intrusion-tolerant Workflow Scheduling algorithm (FITSW). The proposed workflow system uses task executors consisting of many virtual machines to carry out workflow tasks. FITSW duplicates each sub-task three times, uses an intermediate data decision-making mechanism, and then employs a deadline partitioning method to determine sub-deadlines for each sub-task. This way, dynamism is achieved in task scheduling using the resource flow. The proposed technique generates or recycles task executors, keeps the workflow clean, and improves efficiency. Experiments were conducted on WorkflowSim to evaluate the effectiveness of FITSW using metrics such as task completion rate, success rate and completion time.
Results: The results show that FITSW not only raises the success rate by about 12%, it also improves the task completion rate by 6.2% and minimizes the completion time by about 15.6% in comparison with intrusion tolerant scientific workflow ITSW system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576554 | PMC |
http://dx.doi.org/10.7717/peerj-cs.747 | DOI Listing |
Chem Biomed Imaging
December 2024
Faculty of Science, Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium.
This review provides a comprehensive overview of the chemistries and workflows of the sequencing methods that have been or are currently commercially available, providing a very brief historical introduction to each method. The main optical genome mapping approaches are introduced in the same manner, although only a subset of these are or have ever been commercially available. The review comes with a deck of slides containing all of the figures for ease of access and consultation.
View Article and Find Full Text PDFBioinform Adv
December 2024
Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.
Motivation: Proteins at the cell surface connect signaling networks and largely determine a cell's capacity to communicate and interact with its environment. In particular, variations in transcriptomic profiles are often observed between healthy and diseased cells, leading to distinct sets of cell-surface proteins. For these reasons, cell-surface proteins may act as biomarkers for the detection of cells of interest in tissues or body fluids, are often the target of pharmaceutical agents, and hold significant promise in the clinical practice for diagnosis, prognosis, treatment development, and evaluation of therapy response.
View Article and Find Full Text PDFStruct Dyn
November 2024
Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
We introduce a computational framework that integrates artificial intelligence (AI), machine learning, and high-performance computing to enable real-time steering of neutron scattering experiments using an edge-to-exascale workflow. Focusing on time-of-flight neutron event data at the Spallation Neutron Source, our approach combines temporal processing of four-dimensional neutron event data with predictive modeling for multidimensional crystallography. At the core of this workflow is the Temporal Fusion Transformer model, which provides voxel-level precision in predicting 3D neutron scattering patterns.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Computer Science Dept., University of Turin, Italy.
In this paper, we present the significant results from the Covid Radiographic imaging System based on AI (Co.R.S.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
The evolution of precursors to form secondary organic aerosol (SOA) is still a challenge in atmospheric chemistry. Chamber experiments were conducted to simulate the ambient OH oxidation of naphthalene and α-pinene, which are typical markers of anthropogenic and biogenic emissions. Particulate matters were sampled by quartz filters and were analyzed by comprehensive two-dimensional gas chromatography (GC×GC) coupled with a thermal desorption system (TD) and a mass spectrometer (MS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!