AI Article Synopsis

  • - The study investigates diverse microeukaryotic organisms in the marine environment of Galicia, Spain, using DNA metabarcoding to identify potentially harmful eukaryotic microorganisms from sediment and water samples collected between 2016 and 2018.
  • - Findings revealed significant differences in eukaryotic communities between sediment and water, with protists, particularly the TSAR clade, being the most diverse; harmful algae and invasive species were commonly detected.
  • - Identified pathogens pose threats to aquaculture and key marine species, including diatoms, and have implications for human and animal health, highlighting the importance of monitoring marine ecosystem health through advanced molecular techniques.

Article Abstract

The marine environment includes diverse microeukaryotic organisms that play important functional roles in the ecosystem. With molecular approaches, eukaryotic taxonomy has been improved, complementing classical analysis. In this study, DNA metabarcoding was performed to describe putative pathogenic eukaryotic microorganisms in sediment and marine water fractions collected in Galicia (NW Spain) from 2016 to 2018. The composition of eukaryotic communities was distinct between sediment and water fractions. Protists were the most diverse group, with the clade TSAR (Stramenopiles, Alveolata, Rhizaria, and Telonemida) as the primary representative organisms in the environment. Harmful algae and invasive species were frequently detected. Potential pathogens, invasive pathogenic organisms as well as the causative agents of harmful phytoplanktonic blooms were identified in this marine ecosystem. Most of the identified pathogens have a crucial impact on the aquacultural sector or affect to relevant species in the marine ecosystem, such as diatoms. Moreover, pathogens with medical and veterinary importance worldwide were also found, as well as pathogens that affect diatoms. The evaluation of the health of a marine ecosystem that directly affects the aquacultural sector with a zoonotic concern was performed with the metabarcoding assay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595318PMC
http://dx.doi.org/10.3389/fvets.2021.765606DOI Listing

Publication Analysis

Top Keywords

marine ecosystem
12
eukaryotic communities
8
potential pathogens
8
water fractions
8
aquacultural sector
8
pathogens
5
ecosystem
5
marine
5
high-throughput sequencing
4
sequencing environmental
4

Similar Publications

Microcystin-LRs (MC-LR) produced by harmful cyanobacterial blooms (HCBs) pose significant hepatotoxic risks to both the environment and public health. Despite the identification and characterization of a limited number of MC-LR degrading bacteria, the challenge of safely removing MC-LRs from freshwater systems without disrupting aquatic ecosystems remains substantial. This study focused on the isolation of lactic acid bacteria from Bapshikhe, a traditional Korean fermented food, and investigated the mechanisms underlying the degradation of MC-LRs by these bacteria.

View Article and Find Full Text PDF

Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown.

View Article and Find Full Text PDF

Artificial reefs are being increasingly deployed as a coral reef restoration strategy. Additional reef habitats made from conventional substrates (., metal, concrete, .

View Article and Find Full Text PDF

Actinopterygians (ray-finned fishes) successfully passed through the Permian-Triassic Mass Extinction (PTME) and flourished in the Triassic with diverse feeding specializations and occupation of various trophic levels. , one of the largest actinopterygian fish of the Triassic, was characterized by a strong, blunt rostrum and three rows of sharp cutting-edged teeth, making them the top predators in the Early Mesozoic oceanic ecosystem. These fishes rapidly radiated and diversified globally during the Early and Middle Triassic, but the fossil record is rare for the Neo-Tethys in the Late Triassic.

View Article and Find Full Text PDF

Updated range distribution of the non-native Asian green mussel (Linnaeus, 1758) at Guanabara Bay, Rio de Janeiro, Brazil.

PeerJ

December 2024

Marine Biotechnology Department, Instituto de Estudos do Mar Almirante Paulo Moreira, Arraial do Cabo, Rio de Janeiro, Brazil.

Guanabara Bay, located at Rio de Janeiro, Brazil, is a highly urbanized and polluted estuary that houses different port areas, shipyards, and marinas of intense maritime traffic. This infrastructure is widely associated with the introduction and spread of non-native sessile species. A rapid assessment of non-native benthic sessile species conducted in the bay in late 2022 across 19 sites identified a total of 83 taxa, both native and non-native, classified into the following main groups: one Cyanophyta, 13 Macroalgae, 14 Porifera, 11 Cnidaria, six Bryozoa, five Annelida, 10 Mollusca, six Crustacea, 10 Echinodermata, and seven Ascidiacea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!