Applications of artificial intelligence in urological setting: a hopeful path to improved care.

J Exerc Rehabil

Department of Urology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea.

Published: October 2021

Artificial intelligence (AI) has been introduced in urology research and practice. Application of AI leads to better accuracy of disease diagnosis and predictive model for monitoring of responses to medical treatments. This mini-review article aims to summarize current applications and development of AI in urology setting, in particular for diagnosis and treatment of urological diseases. This review will introduce that machine learning algorithm-based models will enhance the prediction accuracy for various bladder diseases including interstitial cystitis, bladder cancer, and reproductive urology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8566099PMC
http://dx.doi.org/10.12965/jer.2142596.298DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
applications artificial
4
intelligence urological
4
urological setting
4
setting hopeful
4
hopeful path
4
path improved
4
improved care
4
care artificial
4
intelligence introduced
4

Similar Publications

Background: The aging global population and the rising prevalence of chronic disease and multimorbidity have strained health care systems, driving the need for expanded health care resources. Transitioning to home-based care (HBC) may offer a sustainable solution, supported by technological innovations such as Internet of Medical Things (IoMT) platforms. However, the full potential of IoMT platforms to streamline health care delivery is often limited by interoperability challenges that hinder communication and pose risks to patient safety.

View Article and Find Full Text PDF

Background: The internet is a key source of health information, but the quality of content from popular search engines varies, posing challenges for users-especially those with low health or digital health literacy. To address this, the "tala-med" search engine was developed in 2020 to provide access to high-quality, evidence-based content. It prioritizes German health websites based on trustworthiness, recency, user-friendliness, and comprehensibility, offering category-based filters while ensuring privacy by avoiding data collection and advertisements.

View Article and Find Full Text PDF

Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.

Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!