Introduction: Opioid misuse is a public health crisis in the US, and misuse of synthetic opioids such as fentanyl have driven the most recent waves of opioid-related deaths. Because those who misuse fentanyl are often a hidden and high-risk group, innovative methods for identifying individuals at risk for fentanyl misuse are needed. Machine learning has been used in the past to investigate discussions surrounding substance use on Reddit, and this study leverages similar techniques to identify risky content from discussions of fentanyl on this platform.
Methods: A codebook was developed by clinical domain experts with 12 categories indicative of fentanyl misuse risk, and this was used to manually label 391 Reddit posts and comments. Using this data, we built machine learning classification models to identify fentanyl risk.
Results: Our machine learning risk model was able to detect posts or comments labeled as risky by our clinical experts with 76% accuracy and 76% sensitivity. Furthermore, we provide a vocabulary of community-specific, colloquial words for fentanyl and its analogues.
Discussion: This study uses an interdisciplinary approach leveraging machine learning techniques and clinical domain expertise to automatically detect risky discourse, which may elicit and benefit from timely intervention. Moreover, our vocabulary of online terms for fentanyl and its analogues expands our understanding of online "street" nomenclature for opiates. Through an improved understanding of substance misuse risk factors, these findings allow for identification of risk concepts among those misusing fentanyl to inform outreach and intervention strategies tailored to this at-risk group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581502 | PMC |
http://dx.doi.org/10.1016/j.invent.2021.100467 | DOI Listing |
JMIR Nurs
January 2025
Department of Healthcare Epidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan.
This research letter discusses the impact of different file formats on ChatGPT-4's performance on the Japanese National Nursing Examination, highlighting the need for standardized reporting protocols to enhance the integration of artificial intelligence in nursing education and practice.
View Article and Find Full Text PDFJMIR Hum Factors
January 2025
Department of Value Improvement, St. Antonius Hospital, Nieuwegein, Netherlands.
Background: Patients with cerebrovascular accident (CVA) should be involved in setting their rehabilitation goals. A personalized prediction of CVA outcomes would allow care professionals to better inform patients and informal caregivers. Several accurate prediction models have been created, but acceptance and proper implementation of the models are prerequisites for model adoption.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States.
Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
JMIR Publications, Toronto, ON, Canada.
J Med Internet Res
January 2025
Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
Background: To reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional exposure) have been identified, and some diagnostic tools (eg, by way of cystoscopy) have been proposed. However, to date, no fully satisfactory (noninvasive, inexpensive, high-performance) solution for widespread deployment has been proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!