Aim This study aimed to develop a predictive model to predict patients' mortality with coronavirus disease 2019 (COVID-19) from the basic medical data on the first day of admission. Methods The medical data including the demographic, clinical, and laboratory features on the first day of admission of clinically diagnosed COVID-19 patients were documented. The outcome of patients was also recorded as discharge or death. Feature selection models were then implemented and different machine learning models were developed on top of the selected features to predict discharge or death. The trained models were then tested on the test dataset. Results A total of 520 patients were included in the training dataset. The feature selection demonstrated 22 features as the most powerful predictive features. Among different machine learning models, the naive Bayes demonstrated the best performance with an area under the curve of 0.85. The ensemble model of the naive Bayes and neural network combination had slightly better performance with an area under the curve of 0.86. The models had relatively the same performance on the test dataset. Conclusion Developing a predictive machine learning model based on the basic medical features on the first day of admission in COVID-19 infection is feasible with acceptable performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592290PMC
http://dx.doi.org/10.7759/cureus.18768DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning models
12
day admission
12
covid-19 infection
8
clinical laboratory
8
basic medical
8
medical data
8
features day
8
discharge death
8
feature selection
8

Similar Publications

Predicting phage-host interaction via hyperbolic Poincaré graph embedding and large-scale protein language technique.

iScience

January 2025

Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.

Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.

View Article and Find Full Text PDF

Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.

View Article and Find Full Text PDF

Artificial intelligence-based framework for early detection of heart disease using enhanced multilayer perceptron.

Front Artif Intell

January 2025

Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha, Saudi Arabia.

Cardiac disease refers to diseases that affect the heart such as coronary artery diseases, arrhythmia and heart defects and is amongst the most difficult health conditions known to humanity. According to the WHO, heart disease is the foremost cause of mortality worldwide, causing an estimated 17.8 million deaths every year it consumes a significant amount of time as well as effort to figure out what is causing this, especially for medical specialists and doctors.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.

Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.

View Article and Find Full Text PDF

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!