Objectives: Catheters are one of the factors for complicated urinary tract infections. Uropathogenic bacteria can attach to the catheter via cell surface hydrophobicity (CSH), form biofilms, and remain in urinary tract. The study was evaluated phenotypic and genotypic characteristics of fimbriae in and uropathogenic (UPEC) isolates from patients with catheter-associated urinary tract infections (CAUTIs) and their association with biofilm formation.

Materials And Methods: Urine specimens were collected through catheters in patients with CAUTIs. Sixty bacterial isolates were identified by biochemical tests. For determination of biofilm formation a tissue culture plate was used. Microbial adhesion to hydrocarbons (MATH) was conducted for CSH determination. The mannose-sensitive haemagglutination (MSHA) and mannose-resistant haemagglutination (MRHA) were determined for type 1 and type 3 fimbriae. Finally, the presence of genes encoding fimbriae was determined by PCR.

Results: All isolates showed strong CSH, biofilm capacity and MRHA phenotype. The results showed that 20% of UPEC and 23% of isolates contained MSHA phenotypes. There was a significant association between biofilm formation and MSHA phenotype in UPEC isolates. The frequency of (80%) and (96.6%) in isolates was higher than UPEC isolates. Both types of bacterial isolates with MSHA phenotypes harbored the gene.

Conclusion: The phenotypic and genotypic characteristics of two bacterial species were highly similar. Also, the type of fimbriae affected bacterial biofilm formation through catheterization. It seems that and gene cluster subunits are suitable markers for identifying bacterial pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591770PMC
http://dx.doi.org/10.22038/IJBMS.2021.53691.12079DOI Listing

Publication Analysis

Top Keywords

biofilm formation
16
urinary tract
16
tract infections
12
upec isolates
12
suitable markers
8
bacterial pathogenesis
8
cell surface
8
surface hydrophobicity
8
catheter-associated urinary
8
infections cautis
8

Similar Publications

Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy.

NPJ Biofilms Microbiomes

January 2025

Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.

Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period.

View Article and Find Full Text PDF

Whole genome sequencing revealed high occurrence of antimicrobial resistance genes in bacteria isolated from poultry manure.

Int J Antimicrob Agents

January 2025

Department of Botany, Institute of Science, Banaras Hindu, University, Varanasi, Uttar Pradesh, 221005, India. Electronic address:

Global demand for food has driven expansion and intensification of livestock production, particularly in developing nations where antibiotic use is often routine. Waste from poultry production, including manure, is commonly utilized as fertilizers in agroecosystems, risking environmental contamination with potentially zoonotic bacteria and antimicrobial resistance genes (ARGs). Here, 33 bacterial isolates were recovered from broiler (n=17) and layer (n=16) chicken manure by aerobic culture using Luria Bertani agar.

View Article and Find Full Text PDF

The fabrications of circularly polarized luminescent (CPL) material are mainly based on the chemical and physical strategies. Controlled biosynthesis of CPL-active materials is beset with difficulties due to the lack of bioactive luminescent precursors and bio-reactors. Enlighted by microbe-assisted asymmetric biosynthesis, herein, we show the in situ bacterial fermentation of Komagataeibacter sucrofermentants to fabricate a series of bacterial cellulosic biofilms with CPL of green, orange, red, and near-infrared colors.

View Article and Find Full Text PDF

The current study was designed to evaluate the antibacterial, antibiofilm, and biofilm inhibitory potential of six medicinal plants, including Trachyspermum ammi, Trigonella foenum-graecum, Nigella sativa, Thymus vulgaris, Terminalia arjuna, and Ipomoea carneaid against catheter-associated bacteria (CAB). Eighteen CAB were identified up to species level using 16S rRNA gene sequencing, viz., Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) are well-acknowledged to accelerate microalgal biofilm formation, yet specific role of stratified EPS is unknown. Bacterial biofilm stratified EPS could enrich phosphorus, whether microalgal biofilm stratified EPS could also realize phosphorus or nitrogen enrichment remains unclarified. This study investigated microalgae dominant biofilm growth characteristics and nutrients removal via inoculating microalgae and stratified bacterial EPS at various microalgae:bacteria ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!