The Brain Tracks Multiple Predictions About the Auditory Scene.

Front Hum Neurosci

Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.

Published: November 2021

AI Article Synopsis

  • The study explores how the brain maintains rhythmic predictions in sounds when multiple interpretations arise from the same auditory source.
  • Participants were tasked with focusing on either tone intensity or duration while ignoring the other, allowing researchers to assess brain responses to attended and unattended sound patterns.
  • Surprisingly, results showed that the brain's response to ignored sound patterns was as strong as for those that were attended, and both types of pattern deviants triggered a similar neural reaction known as the mismatch negativity (MMN).

Article Abstract

The predictable rhythmic structure is important to most ecologically relevant sounds for humans, such as is found in the rhythm of speech or music. This study addressed the question of how rhythmic predictions are maintained in the auditory system when there are multiple perceptual interpretations occurring simultaneously and emanating from the same sound source. We recorded the electroencephalogram (EEG) while presenting participants with a tone sequence that had two different tone feature patterns, one based on the sequential rhythmic variation in tone duration and the other on sequential rhythmic variation in tone intensity. Participants were presented with the same sound sequences and were instructed to listen for the intensity pattern (ignore fluctuations in duration) and press a response key to detected pattern deviants (attend intensity pattern task); to listen to the duration pattern (ignore fluctuations in intensity) and make a button press to duration pattern deviants (attend duration pattern task), and to watch a movie and ignore the sounds presented to their ears (attend visual task). Both intensity and duration patterns occurred predictably 85% of the time, thus the key question involved evaluating how the brain treated the irrelevant feature patterns (standards and deviants) while performing an auditory or visual task. We expected that task-based feature patterns would have a more robust brain response to attended standards and deviants than the unattended feature patterns. Instead, we found that the neural entrainment to the rhythm of the standard attended patterns had similar power to the standard of the unattended feature patterns. In addition, the infrequent pattern deviants elicited the event-related brain potential called the mismatch negativity component (MMN). The MMN elicited by task-based feature pattern deviants had a similar amplitude to MMNs elicited by unattended pattern deviants that were unattended because they were not the target pattern or because the participant ignored the sounds and watched a movie. Thus, these results demonstrate that the brain tracks multiple predictions about the complexities in sound streams and can automatically track and detect deviations with respect to these predictions. This capability would be useful for switching attention rapidly among multiple objects in a busy auditory scene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595267PMC
http://dx.doi.org/10.3389/fnhum.2021.747769DOI Listing

Publication Analysis

Top Keywords

feature patterns
20
pattern deviants
20
duration pattern
12
pattern
10
brain tracks
8
tracks multiple
8
multiple predictions
8
auditory scene
8
sequential rhythmic
8
rhythmic variation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!