There is great interest to explore the importance of different amino-acids on immunity of human. Immunity helps to protect us from the pathogenic infections. The amino-acids are being use to give energy and is also used as an important basic molecule for the making of cells, protecting cell and others. Still, a little information is known for their importance in the inhibition of main protease of SARS-CoV-2. As known, tens of billions of humans are infected due to the SARS-CoV-2 and about a million of deaths are reported due to it or COVID. As of now, no promising drug is available in the market to cure the patients from this infection. Even, the medicines beings used for the partial cure may have some side effects. Therefore, the focus is to explore the natural amino-acids against the Mpro of SARS-CoV-2 as using of amino-acids is not toxic to humans. In the present work, authors have studied the amino-acids using DFT calculations and then they were explored for their promising role in the inhibition of main protease of SARS-CoV-2 using molecular docking and molecular dynamics simulations. Out of the 20 amino-acids, arginine found to best against the main protease of SARS-CoV-2 using the molecular docking and the binding energy was -0.94 kcal/ mol. Further, molecular dynamics simulations for the main protease of SARS-CoV-2 with and without arginine was performed using the Amber and different thermodynamic parameters like ΔH and TΔS to get ΔG, comes out to be 2.74 kcal/mol. It is expected that arginine can boost the immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590830 | PMC |
http://dx.doi.org/10.1016/j.molstruc.2021.131924 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Basic Medical Sciences, Faculty of Medicine, Istanbul Medipol University, Istanbul 34815, Türkiye.
The COVID-19 pandemic began in March 2020 and has affected many countries and infected over a million people. It has had a serious impact on people's physical and mental health, daily life and the global economy. Today, many drugs show limited efficacy in the treatment of COVID-19 and studies to develop effective drugs continue.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany.
The main protease M is a clinically validated target to treat infections by the coronavirus SARS-CoV-2. Among the first reported M inhibitors was the peptidomimetic α-ketoamide , whose cocrystal structure with M paved the way for multiple lead-finding studies. We established structure-activity relationships for the series by modifying residues at the P1', P3, and P4 sites.
View Article and Find Full Text PDFDigit Discov
January 2025
School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
FEgrow is an open-source software package for building congeneric series of compounds in protein binding pockets. For a given ligand core and receptor structure, it employs hybrid machine learning/molecular mechanics potential energy functions to optimise the bioactive conformers of supplied linkers and functional groups. Here, we introduce significant new functionality to automate, parallelise and accelerate the building and scoring of compound suggestions, such that it can be used for automated design.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Neurology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi Province, P. R. China.
Osteoporosis (OP) is a common clinical bone disease that can cause a high incidence of non-stress fractures and is one of the main degenerative diseases that endangers the health and life of middle-aged and older women. The mechanism underlying the abnormal differentiation and function of human bone marrow stem cells (hBMSCs) remains to be elucidated. Cell proliferation and differentiation were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, alkaline phosphatase (ALP) staining, and Alizarin Red Staining.
View Article and Find Full Text PDFJ Med Chem
January 2025
Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!