Objective: The chemo-preventative and therapeutic properties of selenium nanoparticles (SeNPs) have been documented over recent decades and suggest the potential uses of SeNPs in medicine. Biogenic SeNPs have higher biocompatibility and stability than chemically synthesized nanoparticles, which enhances their medical applications, especially in the field of cancer therapy. This study evaluated the potential of green-synthetized SeNPs by using berberine (Ber) as an antitumor agent and elucidated the mechanism by which these molecules combat Ehrlich solid tumors (ESTs).

Methods: SeNPs containing Ber (SeNPs-Ber) were synthesized using Ber and NaSeO and characterized with Fourier transform infrared spectroscopy. Sixty male Swiss albino mice were then acclimatized for one week, injected with Ehrlich ascites tumor cells, and divided into four groups: EST, EST + cisplatin (5 mg/kg), EST + Ber (20 mg/kg), and EST + SeNPs-Ber (0.5 mg/kg). At the end of a 16-day observation period, 12 mice from each group were euthanized to analyze differences in the body weight, tumor size, gene expression, and oxidative stress markers in the four groups. Three mice from each group were kept alive to compare the survival rates.

Results: Treatment with SeNPs-Ber significantly improved the survival rate and decreased the body weight and tumor size, compared to the EST group. SeNPs-Ber reduced oxidative stress in tumor tissue, as indicated by a decrease in the lipid peroxidation and nitric oxide levels and an increase in the glutathione levels. Moreover, SeNPs-Ber activated an apoptotic cascade in the tumor cells by downregulating the B-cell lymphoma 2 (Bcl-2) expression rate and upregulating the Bcl-2-associated X protein and caspase-3 expression rates. SeNPs-Ber also considerably improved the histopathological alterations in the developed tumor tissue, compared to the EST group.

Conclusion: Our study provides a new insight into the potential role of green-synthesized SeNPs by using Ber as a promising anticancer agent, these molecules could be used alone or as supplementary medication during chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joim.2021.11.002DOI Listing

Publication Analysis

Top Keywords

selenium nanoparticles
8
promising anticancer
8
anticancer agent
8
senps ber
8
tumor cells
8
mice group
8
body weight
8
weight tumor
8
tumor size
8
oxidative stress
8

Similar Publications

Background: The potent antioxidant lycopene has attracted a large amount of research attention given its potential health benefits. We aimed to assess the antimicrobial, anti-inflammatory, and antioxidant properties of lycopene (Lyc), selenium nanoparticles (Se-NPs), and lycopene selenium nanoparticles (Lyc-Se-NPs).

Methods: FTIR, polydispersity index, and zeta potential evaluations provided a complete characterization of the synthesized Lyc-Se-NPs.

View Article and Find Full Text PDF

Immunoregulatory Effects of Polysaccharide Modified Selenium Nanoparticles on H22 Tumor-Bearing Mice.

Foods

December 2024

Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China.

polysaccharide (CPP) and rare element selenium (Se) have been proved to exert various biological activities, and our previous study demonstrated that selenium nanoparticles modified with CPP (CPP-SeNPs) possessed significantly enhanced tumor cytotoxicity in vitro. This study aimed to investigated the inhibitory effects of CPP-SeNPs complex on H22 solid tumors via immune enhancement. In this study, the H22 tumor-bearing mice model was constructed, and the potential mechanisms of CPP-SeNPs antitumor effects were further explored by evaluating cytokines expression levels, immune cells activities and tumor cells apoptotic indicators in each group.

View Article and Find Full Text PDF

Spore-forming bacterial species pose a serious threat to food plants and healthcare facilities that use high-temperature processing and sterilizing techniques to sanitize medical equipment and food items. These severe processing conditions trigger sporulation, which is the process by which spore-forming bacteria, such as those of the and species, begin to produce spores, which are extremely resilient entities capable of withstanding adverse environmental circumstances. Additionally, these spores are resistant to a wide range of disinfectants and antibacterial therapies, such as hydrolytic enzymes, radiation, chemicals, and antibiotics.

View Article and Find Full Text PDF

Traumatic tendon injuries generate reactive oxygen species and inflammation, which may account for slow or poor healing outcomes. Selenium is an essential trace element presented in selenoproteins, many of which are strong antioxidant enzymes. Selenium nanoparticles (SeNPs) have been reported to promote tissue repair due to their anti-oxidative, anti-inflammatory, anti-apoptotic, and differentiation-modulating properties.

View Article and Find Full Text PDF

The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!