Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The release of toxic fluoride byproducts is a seemingly unavoidable artifact of surface engineering, causing severe environmental and human health problems. Here we propose and implement a new "upcycle hazard against other hazard" concept in the case study of cold atmospheric plasma surface modification of fluoropolymers such as polytetrafluorethylene (PTFE). Capitalizing on the excellent controllability, precision and energy efficiency of the plasma surface processing, complemented with the recently discovered ability of plasmas to activate water to produce a potent electrochemical disinfectant, referred to as the plasma-activated water (PAW), we demonstrate a radically new solution to capture the hazardous gaseous fluorides into the PAW and use the as-fluorinated PAW (F-PAW) as a very effective antimicrobial disinfectant. A customized surface discharge reactor is developed to evaluate the effects of fluorides released from the plasma etching of PTFE on the chemistries in gas-phase plasmas and F-PAW, as well as the antibacterial effect of F-PAW. The results show that gaseous fluorides, including COF, CFCOF, and SiF are produced in gas-phase plasmas, and the dissolution of thus-generated fluorides into PAW has a strong effect on inactivating catalase and destroying the oxidation resistance of bacterial cells. As a result, the antibacterial effect of PAW-fluorides against the methicillin-resistant Staphylococcus aureus (MRSA) is enhanced by > 5 log reductions, suggesting that otherwise hazardous fluorides from the plasma processing of PTFE can be used to enhance the microbial disinfection efficiency of PAW. The demonstrated approach opens new avenues for sustainable hazard valorization exemplified by converting toxic fluoride-etching products into potent antimicrobial and potentially anti-viral disinfectants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127658 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!