A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis of hierarchical porous nitrogen-doped reduced graphene oxide/zinc ferrite composite foams as ultrathin and broadband microwave absorbers. | LitMetric

Magnetic graphene foams with three-dimensional (3D) porous structure, low bulk density and multiple electromagnetic loss mechanisms have been widely recognized as the potential candidates for lightweight and high-efficiency microwave attenuation. Herein, zinc ferrite hollow microspheres decorated nitrogen-doped reduced graphene oxide (NRGO/ZnFeO) composite foams were prepared via a solvothermal and hydrothermal two-step method. Results demonstrated that the attained magnetic composite foams possessed the ultralow bulk density (12.9-13.5 mg·cm) and 3D hierarchical porous netlike structure constructed through stacking of lamellar NRGO. Moreover, the microwave dissipation performance of binary composite foams could be notably improved through annealing treatment and further elaborately regulating the annealing temperature. Remarkably, the attained composite foam with the annealing temperature of 300.0 °C presented the integrated excellent microwave attenuation capacity, i.e. the strongest reflection loss reached -40.2 dB (larger than 99.99% absorption) and broadest bandwidth achieved 5.4 GHz (from 12.4 GHz to 17.8 GHz, covering 90.0% of Ku-band) under an ultrathin thickness of only 1.48 mm. Furthermore, the probable microwave dissipation mechanisms were illuminated, which derived from the optimized impedance matching, strengthened dipole polarization, interfacial polarization and multiple reflection, notable conduction loss, natural resonance and eddy current loss. Results of this work would pave the way for developing graphene-based 3D lightweight and high-efficiency microwave absorption composites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.11.030DOI Listing

Publication Analysis

Top Keywords

composite foams
16
hierarchical porous
8
nitrogen-doped reduced
8
reduced graphene
8
bulk density
8
lightweight high-efficiency
8
high-efficiency microwave
8
microwave attenuation
8
microwave dissipation
8
annealing temperature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!