Fruit waste-derived cellulose and graphene-based aerogels: Plausible adsorption pathways for fast and efficient removal of organic dyes.

J Colloid Interface Sci

CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India. Electronic address:

Published: February 2022

A wide range of organic pollutants in industrial effluents, agricultural runoff, and domestic discharges are exacerbating water scarcity, leading to water-borne ailments, and adversely affecting the marine ecosystem and biodiversity. The efficient, sustainable, and cost-effective materials need to be addressed urgently for the removal of organic pollutants. Herein, ultra-light (0.018 g.cm) and highly porous (96.4%) composite aerogel is prepared by gelatinization of graphene oxide with fruit waste-derived cellulose. The macroscopic porosity generated by interconnecting cellulosic skeleton and graphene oxide sheets via hydrogen bonding network provided ample avenues for transport and diffusion of organic dyes-enriched wastewater throughout the cellulose-graphene oxide composite aerogel (CGA). Consequently, organic dyes are efficiently adsorbed by easily accessible surface sites distributed throughout the CGA. The size, charge, and chemical structure of organic dyes along with textural features and accessible surface active sites of CGA governed the adsorption process. The spectroscopic analyses based on FTIR, Raman, and XPS measurements suggest electrostatic, n-π, π-π, cation-π interactions, dipole-dipole hydrogen, and Yoshida hydrogen linkages as major interactive pathways for the adsorption of organic dyes by the CGA. Moreover, the composite aerogel furnished an excellent recyclability for the adsorptive removal of organic pollutants from wastewater. The present work promises the potential of 2D nanostructured layered materials and fruit-waste-derived composite aerogels for sustainable utilization in wastewater treatment, which can be an excellent step towards water security.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.11.016DOI Listing

Publication Analysis

Top Keywords

organic dyes
16
removal organic
12
organic pollutants
12
composite aerogel
12
fruit waste-derived
8
waste-derived cellulose
8
organic
8
graphene oxide
8
accessible surface
8
cellulose graphene-based
4

Similar Publications

We present novel fluorescent cholesteryl probes (CNDs) with a modular design based on the solvatochromic 1,8-phthalimide scaffold. We have explored how different modules-linkers and head groups-affect the ability of these probes to integrate into lipid membranes and how they distribute intracellularly in mouse astrocytes and fibroblasts targeting lysosomes and lipid droplets. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes.

View Article and Find Full Text PDF

In this study, 3,4-diaminobenzoic acid (DABA) was introduced into the porphyrin metal-organic framework (PCN-224) for the first time to prepare a ratiometric fluorescent probe (PCN-224-DABA) to quantitatively detect ferric iron (Fe(III)) and selenium (IV) (Se(IV)). The fluorescence attributed to the DABA of PCN-224-DABA at 345 nm can be selectively quenched by Fe(III) and Se(IV), but the fluorescence emission peak attributed to tetrakis (4-carboxyphenyl) porphyrin (TCPP) at 475 nm will not be disturbed. Therefore, the ratio of I/I with an excitation wavelength of 270 nm can be designed to determine Fe(III) and Se(IV).

View Article and Find Full Text PDF

Metal nanoclusters (NCs) are promising alternatives to organic dyes and quantum dots. These NCs exhibit unique physical and chemical properties, such as fluorescence, chirality, magnetism and catalysis, which contribute to significant advancements in biosensing, biomedical diagnostics and therapy. Through adjustments in composition, size, chemical environments and surface ligands, it is possible to create NCs with tunable optoelectronic and catalytic activity.

View Article and Find Full Text PDF

Nanolabels Prepared by the Entrapment or Self-Assembly of Signaling Molecules for Colorimetric and Fluorescent Immunoassays.

Biosensors (Basel)

December 2024

Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.

Nanomaterials have attracted significant attention as signal reporters for immunoassays. They can directly generate detectable signals or release a large number of signaling elements for readout. Among various nanolabels, nanomaterials composed of multiple signaling molecules have shown great potential in immunoassays.

View Article and Find Full Text PDF

Environmentally friendly nanoporous gels are tailor-designed and employed in the adsorption of toxic organic pollutants in wastewater. To ensure the maximum adsorption of the contaminant molecules by the gels, molecular modeling techniques were used to evaluate the binding affinity between the toxic organic contaminants such as methylene blue (MB) and Congo red (CR) and various biopolymers. To generate nanopores in the matrix of the polymeric gels, salt crystals were used as porogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!