A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active microrheology in corrugated channels: Comparison of thermal and colloidal baths. | LitMetric

Active microrheology in corrugated channels: Comparison of thermal and colloidal baths.

J Colloid Interface Sci

Centre Européen de Calcul Atomique et Moléculaire (CECAM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochimie, Avenue Forel 2, 1015 Lausanne, Switzerland; Departament de Fisica de la Materia Condensada, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona, Spain; UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain.

Published: February 2022

Hypothesis: The dynamics of colloidal suspension confined within porous materials strongly differs from that in the bulk. In particular, within porous materials, the presence of boundaries with complex shapes entangles the longitudinal and transverse degrees of freedom inducing a coupling between the transport of the suspension and the density inhomogeneities induced by the walls.

Method: Colloidal suspension confined within model porous media are characterized by means of active microrheology where a net force is applied on a single colloid (tracer particle) whose transport properties are then studied. The trajectories provided by active microrheology are exploited to determine the local transport coefficients. In order to asses the role of the colloid-colloid interactions we compare the case of a tracer embedded in a colloidal suspension to the case of a tracer suspended in an ideal bath.

Finding: Our results show that the friction coefficient increases and the passage time distribution widens upon increasing the corrugation of the channel. These features are obtained for a tracer suspended in a (thermalized) colloidal bath as well as for the case of an ideal thermal bath. These results highlight the relevance of the confinement on the transport and show a mild dependence on the colloidal/thermal bath. Finally, we rationalize our numerical results with a semi-analytical model. Interestingly, the predictions of the model are quantitatively reliable for mild external forces, hence providing a reliable tool for predicting the transport across porous materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.10.193DOI Listing

Publication Analysis

Top Keywords

active microrheology
12
colloidal suspension
12
porous materials
12
suspension confined
8
case tracer
8
tracer suspended
8
colloidal
5
transport
5
microrheology corrugated
4
corrugated channels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!