Mother's milk provides newborns with various nutrients (e.g., enzymes, proteins, peptides, hormones, antibodies) that help babies grow and protect them from bacterial and viral infections. The functions of many components of breast milk can be very different from their corresponding functions in body fluids of healthy adults. Catalytic antibodies (abzymes) that hydrolyze peptides, proteins, DNA, RNA, and oligosaccharides were detected not only in human milk, but also in the blood sera of autoimmune patients. However, abzymes with unexpected synthetic activities (lipids, oligosaccharides, and protein kinase activities) were revealed in milk that were not found in the blood of autoimmune patients. The nutrition of infants with fresh milk has a very specific role; newborns are well protected by antibodies of mother's milk (passive immunity). Protease abzymes were found in the blood sera of autoimmune patients, whereas healthy humans usually do not contain such autoantibodies. Here, we present the first evidence that the milk of healthy mothers contains secretory (s)IgA that effectively hydrolyze 5 histones (e.g., H1, H2A, H2B, H3, and H4) and myelin basic protein (MBP). Several rigid criteria were applied to show that protease activity is an intrinsic property of sIgA. Milk abzymes against 5 histones cannot hydrolyze different control proteins except histones and MBP, whereas autoantibodies against MBP split this protein and 5 histones. Antibodies against histones and MBP exhibit complexation polyreactivity as well as specific and unusual catalytic cross-reactivity. With some exceptions, the specific sites of hydrolysis of H1, H2A, and H2B by sIgA against histones do not coincide with the sites of hydrolysis by abzymes against MBP. On the whole, fresh human milk is a very specific source of many of the most unusual antibodies and abzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2021-20917 | DOI Listing |
Breastfeed Med
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, INICSA, Córdoba, Argentina.
This study evaluates the impact of various processing steps in the human milk (HM) donation chain on nutritional composition and oxidative biomarkers, specifically focusing on triacylglycerols, glucose, polyphenols, and lipid peroxides. A total of 68 HM samples were collected from the Human Milk Bank of Córdoba (Argentina) between 2022 and 2023. The effects of storage and pasteurization using the Holder method were assessed.
View Article and Find Full Text PDFBreastfeed Med
January 2025
Neonatology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
Pasteurized donor human milk must be provided when mother's own milk (MOM) is not available for preterm infants. There are concerns that human milk banks (HMBs) and the use of donor milk may potentially reduce breastfeeding rates. To compare feeding during hospitalization and at discharge before and after the opening of a HMB and to evaluate the proportion of milk provided by mothers of premature babies, comparing the intake of MOM in infants born of donor and no donor mothers.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041.
The EGFR-TKIs (epidermal growth factor receptor-tyrosine kinases inhibitors) offer significant benefits to lung cancer patients with sensitive EGFR mutations; however, the development of acquired resistance poses a significant challenge and leads to poor prognosis. Thus, exploring novel therapeutic strategies to overcome EGFR-TKI resistance is urgently needed. This study introduces an innovative approach utilizing folic acid-modified milk exosomes loaded with c-kit siRNA (FA-mExo-siRNA-c-kit) to target EGFR-TKI resistance in lung cancer.
View Article and Find Full Text PDFFront Microbiol
December 2024
Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India.
Introduction: The development of the human gut microbiota is shaped by factors like delivery mode, infant feeding practices, maternal diet, and environmental conditions. Diet plays a pivotal role in determining the diversity and composition of the gut microbiome, which in turn impacts immune development and overall health during this critical period. The early years, which are vital for microbial shaping, highlight a gap in understanding how the shift from milk-based diets to solid foods influences gut microbiota development in infants and young children, particularly in Yaoundé, Cameroon.
View Article and Find Full Text PDFEnzyme Microb Technol
December 2024
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China. Electronic address:
Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!