This research aimed to assess curcumin (CUR) effects on fenitrothion (FNT), a broad-spectrum organophosphate insecticide, -induced hepatorenal damage. Thirty adult male Wistar rats were allocated at random to five equal groups orally administered distilled water containing 1% carboxyl methylcellulose, corn oil (1 mL/rat), CUR (100 mg/kg b.wt.), FNT (5 mg/kg b.wt.), or CUR + FNT. CUR and FNT were dosed three times a week for two months. At the end of this trial, blood and tissue samples (liver and kidney) were subjected to molecular, biochemical, and histopathological assessments. The results revealed that CUR significantly diminished the FNT-induced up-regulation of hepatic CYP1A1 and CYP1A2 transcriptional levels. Moreover, CUR significantly suppressed the increment of the serum levels of hepatic alanine aminotransferase, gamma-glutamyl transferase, and kidney damage indicators (urea and creatinine) in FNT-intoxicated rats. Furthermore, in the hepatic and renal tissues, CUR remarkably restored the FNT-associated depletion of the antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S transferase, catalase, and superoxide dismutase). In addition, CUR notably reduced the FNT-induced increment in malondialdehyde content in the hepatic and renal tissues. Besides, the pathological aberrations in liver and kidney tissues resulting from FNT exposure were significantly abolished in FNT + CUR treated rats. Overall, CUR could be an effective ameliorative agent against negative pesticide impacts like FNT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2021.104959 | DOI Listing |
SAR QSAR Environ Res
November 2024
Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, India.
Diabetes is attributed to an increased vulnerability to bacterial infection linked to unregulated hyperglycaemia. The present study highlights the formulation of nanoparticles with phyto-compound piperine (PIP) encapsulated within non-toxic biodegradable polymer poly-lactide co-glycolide (PLGA) which showed a variety in surface functionality, biocompatibility, and the ability to tailor an optimized release rate from its polymeric enclosure. The observations revealed that nanopiperine (NPIP) pre-treatment in mice inhibited alteration in hepatic tissue architecture and hepato-biochemical parameters in diabetes and its associated bacterial infections.
View Article and Find Full Text PDFEnviron Int
December 2024
Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, USA. Electronic address:
Eur J Drug Metab Pharmacokinet
November 2024
Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 Xiangchun Road, Kaifu District, Changsha, 410008, Hunan, China.
Background And Objectives: Hypertensive nephropathy (HN) has become one of the main causes of end-stage renal disease. Drug combination therapy is a common clinical treatment for HN. However, the impact of HN on drug-metabolizing enzymes and transporters, which may lead to drug-drug interactions (DDIs) and even trigger toxic side effects, remains unclear.
View Article and Find Full Text PDFToxins (Basel)
September 2024
Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.
RSC Med Chem
August 2024
Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec - Université Laval, Axe Oncologie 10 Rue de l'Espinay Québec QC G1L 3L5 Canada (418) 525 4444 ext. 52364.
We developed first-in-class antimitotic prodrugs phenyl 4-(2-oxo-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) bioactivated by cytochrome P450 (CYP) 1A1 that are highly selective toward several breast cancer cells. However, they show sparingly water solubility. Therefore, we replaced their phenyl ring B with a substituted pyridinyl group preparing novel pyridinyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PYRAIB-SOs) and their hydrochloride salts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!