A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Percolation of temporal hierarchical mobility networks during COVID-19. | LitMetric

Percolation of temporal hierarchical mobility networks during COVID-19.

Philos Trans A Math Phys Eng Sci

Department of Computer Science and Center for Network Science and Technology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Published: January 2022

Percolation theory is essential for understanding disease transmission patterns on the temporal mobility networks. However, the traditional approach of the percolation process can be inefficient when analysing a large-scale, dynamic network for an extended period. Not only is it time-consuming but it is also hard to identify the connected components. Recent studies demonstrate that spatial containers restrict mobility behaviour, described by a hierarchical topology of mobility networks. Here, we leverage crowd-sourced, large-scale human mobility data to construct temporal hierarchical networks composed of over 175 000 block groups in the USA. Each daily network contains mobility between block groups within a Metropolitan Statistical Area (MSA), and long-distance travels across the MSAs. We examine percolation on both levels and demonstrate the changes of network metrics and the connected components under the influence of COVID-19. The research reveals the presence of functional subunits even with high thresholds of mobility. Finally, we locate a set of recurrent critical links that divide components resulting in the separation of core MSAs. Our findings provide novel insights into understanding the dynamical community structure of mobility networks during disruptions and could contribute to more effective infectious disease control at multiple scales. This article is part of the theme issue 'Data science approaches to infectious disease surveillance'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8607142PMC
http://dx.doi.org/10.1098/rsta.2021.0116DOI Listing

Publication Analysis

Top Keywords

mobility networks
16
temporal hierarchical
8
mobility
8
connected components
8
block groups
8
infectious disease
8
networks
5
percolation
4
percolation temporal
4
hierarchical mobility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!