A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data science approaches to confronting the COVID-19 pandemic: a narrative review. | LitMetric

Data science approaches to confronting the COVID-19 pandemic: a narrative review.

Philos Trans A Math Phys Eng Sci

The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

Published: January 2022

During the COVID-19 pandemic, more than ever, data science has become a powerful weapon in combating an infectious disease epidemic and arguably any future infectious disease epidemic. Computer scientists, data scientists, physicists and mathematicians have joined public health professionals and virologists to confront the largest pandemic in the century by capitalizing on the large-scale 'big data' generated and harnessed for combating the COVID-19 pandemic. In this paper, we review the newly born data science approaches to confronting COVID-19, including the estimation of epidemiological parameters, digital contact tracing, diagnosis, policy-making, resource allocation, risk assessment, mental health surveillance, social media analytics, drug repurposing and drug development. We compare the new approaches with conventional epidemiological studies, discuss lessons we learned from the COVID-19 pandemic, and highlight opportunities and challenges of data science approaches to confronting future infectious disease epidemics. This article is part of the theme issue 'Data science approaches to infectious disease surveillance'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8607150PMC
http://dx.doi.org/10.1098/rsta.2021.0127DOI Listing

Publication Analysis

Top Keywords

data science
16
science approaches
16
covid-19 pandemic
16
infectious disease
16
approaches confronting
12
confronting covid-19
8
disease epidemic
8
future infectious
8
data
5
approaches
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!