Mitochondrial bioenergetic, oxidative stress and burrowing responses in earthworm exposed to roxarsone in soil.

Ecotoxicol Environ Saf

School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Published: November 2021

The eco-risk of roxarsone (ROX) was evaluated using multiple responses of earthworm biomarkers under different ROX concentrations for 28 d. With the increasing total arsenic accumulation (TAs-E), biological responses in earthworm generally showed a two-stage changes of homeostasis dysregulation and dose-dependent alterations. At the early periods, ROX stress increased the reactive oxygen species (ROS) and lipid peroxidation (LPO) in a similar manner, and apparently disrupted mitochondrial calcium ([Ca]). But earthworms regulated their mitochondrial and redox homeostasis through stable mitochondrial membrane potential (MMP) and increase of ATP level, superoxide dismutase (SOD) and catalase (CAT). After 14 d, the positively correlated mitochondrial effects of ROS, [Ca], MMP and ATP were related to the behavioral inhibition of burrow length, depth and reuse rate as well as antioxidant up-regulation of Nrf2, HO-1, sod1 and cat. These results contributed possible biomarkers from the dose-dependent relationship between mitochondrial, antioxidant and behavioral responses. Multiple biological detection in earthworms can better reflect the sub-chronic ecotoxicity of phenylarsenic pollutants in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.113003DOI Listing

Publication Analysis

Top Keywords

responses earthworm
12
mitochondrial
6
mitochondrial bioenergetic
4
bioenergetic oxidative
4
oxidative stress
4
stress burrowing
4
responses
4
burrowing responses
4
earthworm exposed
4
exposed roxarsone
4

Similar Publications

Wildfire ashes: evaluating threats on the Pantanal wetland reserve (Mato Grosso, Brazil) using ecotoxicological tests.

Environ Sci Pollut Res Int

January 2025

Program in Biodiversity and Nature Conservation (UFJF), Institute of Biological Sciences (ICB), Federal University of Juiz de Fora (UFJF), University Campus, Martelos, Juiz de Fora, Minas Gerais, CEP, 36036-900, Brazil.

In 2020, the largest continuous wetland area on the planet, the Brazilian Pantanal, experienced an unprecedented fire that affected the entire ecosystem. Our goal was to elucidate the effects of ash presence following the fire events. We quantified the impact of ashes, collected in four Conservation Units, on soil, water, and atmosphere.

View Article and Find Full Text PDF

Amplification of benzo[a]pyrene toxicity persistence in earthworms by polystyrene nanoplastics: From organismal health to molecular responses.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.. Electronic address:

Typically, nanoplastics (NPs) are contaminated before entering soil, and the impact of NPs on the biotoxicity of Persistent Organic Pollutants (POPs) they carry remains unclear. This study simulated two environmentally relevant scenarios: singular exposure of benzo[a]pyrene (BaP) in soil and exposure via NPs loading (NP-BaP). Correlation analysis and machine learning revealed that injury in earthworms exposed for 28 days was significantly associated with NPs.

View Article and Find Full Text PDF

Pesticides often exist as complex mixtures in soil environments, yet the toxicity of these combinations has not been thoroughly investigated. In light of this, the current study aimed to assess the enzymatic activity and gene expression responses in the earthworm Eisenia fetida when exposed to a mixture of beta-cypermethrin (BCY) and triadimefon (TRI). The findings revealed that co-exposure to BCY and TRI triggered acute synergistic toxicity in E.

View Article and Find Full Text PDF

Enantioselective Assessment of Etoxazole Enantiomers in Earthworms (): Bioaccumulation, Degradation, Transcriptome, and Oxidative Stress.

J Agric Food Chem

January 2025

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.

This study systemically investigated the enantioselective bioaccumulation and degradation of etoxazole (ETZ) in earthworms along with the transcriptome and oxidative stress responses to ETZ enantiomer exposure. Based on the M-shaped bioaccumulation trends for ETZ enantiomers, -ETZ was found to be preferentially bioaccumulated in earthworms. Sublethal toxicity analysis showed that -ETZ induced greater changes in protein content, malondialdehyde content, detoxifying metabolic enzyme activity, and oxidative stress in earthworms, compared to those induced by -ETZ.

View Article and Find Full Text PDF

Unveiling the impact of polystyrene and low-density polyethylene microplastics on arsenic toxicity in earthworms.

J Environ Manage

January 2025

College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China. Electronic address:

The high global production combined with low recycling rates of polystyrene (PS) and low-density polyethylene (LDPE) contributes to the abundance of these commonly used plastics in soil, including as microplastics (MPs). However, the combined effects of MPs and heavy metals, such as arsenic (As) on earthworms are poorly understood. Here, we show that neither PS nor LDPE altered the effects of As on the survival, growth, and reproduction of the earthworm Eisenia fetida.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!